Exchange bias in magnetic topological insulator superlattices
Nano Letters American Chemical Society 20:7 (2020) 5315-5322
Abstract:
Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures.Phase diagram and superconducting dome of infinite-layer $\mathrm{Nd_{1-x}Sr_{x}NiO_{2}}$ thin films
(2020)
Micromagnetic modelling and imaging of vortex/merons structures in an oxide | metal heterostructure
Physical Review B American Physical Society 101:14 (2020) 144420
Abstract:
Using micromagnetic simulations, we have modelled the formation of imprinted merons and anti-merons in cobalt overlayers of different thickness (1-8 nm), stabilised by interfacial exchange with antiferromagnetic vortices in $\alpha$-Fe2O3. Structures similar to those observed experimentally could be obtained with reasonable exchange parameters, also in the presence of surface roughness. We produce simulated meron/antimeron images by magnetic force microscopy (MFM) and nitrogen-vacancy (N-V) centre microscopy, and established signatures of these topological structures in different experimental configurations.Magneto-optical Kerr switching properties of (CrI3)2 and (CrBr3/CrI3) bilayers
ACS Applied Electronic Materials American Chemical Society 2:5 (2020) 1373-1380
Abstract:
We explore the magneto-optical Kerr effect (MOKE) for different spin configurations of the (CrI3)2 bilayer and (CrBr3/CrI3) mixed bilayer using symmetry arguments and first-principles electronic structure calculations. Starting from CrX3 (X = I, Br) monolayers, we considered collinear ferromagnetic (FM) and layered antiferromagnetic (AFM) states for (CrI3)2 and (CrBr3/CrI3) bilayers. The AFM (CrI3)2 bilayer does not show MOKE, consistent with the presence of a symmetry operator combining inversion (I) and time reversal (T) symmetries. The FM state preserves I symmetry but breaks the T symmetry, thus allowing a nonzero Kerr angle, which is reversible by switching the FM spins. The (CrBr3/CrI3) bilayer breaks both the I and T symmetries and thus exhibits MOKE both in the FM state and, remarkably, in the AFM state. In both FM and AFM configurations, the Kerr angle switches by reversing the spins in both layers. Our study demonstrates that the MOKE spectra can help to characterize different magnetic configurations in these emerging two-dimensional (2D) magnetic materials due to a different stacking of the monolayers, even in the AFM case. Note that the present symmetry analyses and MOKE properties apply to more general 2D magnetic van der Waals heterostructures. Furthermore, we propose the (CrBr3/CrI3) bilayer as a promising candidate for AFM spintronics since the two time-reversed AFM states are associated with opposite Kerr rotation, i.e., they could be used as memory elements.Tunable and Enhanced Rashba Spin-Orbit Coupling in Iridate-Manganite Heterostructures
(2020)