Wafer-scale epitaxial growth of the thickness-controllable van der Waals ferromagnet CrTe2 for reliable magnetic memory applications

(2022)

Authors:

Xinqi Liu, Yunyouyou Xia, Lei Gao, Puyang Huang, Liyang Liao, Baoshan Cui, Dirk Backes, Gerrit van der Laan, Thorsten Hesjedal, Yuchen Ji, Peng Chen, Fan Wu, Meixiao Wang, Junwei Zhang, Guoqiang Yu, Cheng Song, Yulin Chen, Zhongkai Liu, Yumeng Yang, Yong Peng, Gang Li, Qi Yao, Xufeng Kou

Layer-dependent magnetic domains in atomically thin Fe5GeTe2

ACS Nano American Chemical Society 16:7 (2022) 10545-10553

Authors:

Ryuji Fujita, Pedram Bassirian, Zhengxian Li, Yanfeng Guo, Mohamad A Mawass, Florian Kronast, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

Magnetic domain formation in two-dimensional (2D) materials gives perspectives into the fundamental origins of 2D magnetism and also motivates the development of advanced spintronics devices. However, the characterization of magnetic domains in atomically thin van der Waals (vdW) flakes remains challenging. Here, we employ X-ray photoemission electron microscopy (XPEEM) to perform layer-resolved imaging of the domain structures in the itinerant vdW ferromagnet Fe5GeTe2 which shows near room temperature bulk ferromagnetism and a weak perpendicular magnetic anisotropy (PMA). In the bulk limit, we observe the well-known labyrinth-type domains. Thinner flakes, on the other hand, are characterized by increasingly fragmented domains. While PMA is a characteristic property of Fe5GeTe2, we observe a spin-reorientation transition with the spins canting in-plane for flakes thinner than six layers. Notably, a bubble phase emerges in four-layer flakes. This thickness dependence, which clearly deviates from the single-domain behavior observed in other 2D magnetic materials, demonstrates the exciting prospect of stabilizing complex spin textures in 2D vdW magnets at relatively high temperatures.

Route towards stable homochrial topological textures in A-type antiferromagnets

Physical Review B American Physical Society 105 (2022) 224424

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli

Abstract:

Topologically protected whirling magnetic textures could emerge as data carriers in next-generation post-Moore computing. Such textures are abundantly observed in ferromagnets (FMs); however, their antiferromagnetic (AFM) counterparts are expected to be even more relevant for device applications, as they promise ultrafast, deflection-free dynamics while being robust against external fields. Unfortunately, such textures have remained elusive; hence identifying materials hosting them is key to developing this technology. Here, we present comprehensive micromagnetic and analytical models investigating topological textures in the broad material class of A-type antiferromagnets, specifically focusing on the prototypical case of α-Fe2O3—an emerging candidate for AFM spintronics. By exploiting a symmetry-breaking interfacial Dzyaloshinskii-Moriya interaction (iDMI), it is possible to stabilize a wide topological family, including AFM (anti)merons, bimerons, and the hitherto undiscovered AFM skyrmions. While iDMI enforces homochirality and improves the stability of these textures, the widely tunable anisotropy and exchange interactions enable precise control of their core dimensions. We then present a unifying framework to model the scaling of texture sizes based on a simple dimensional analysis. As the parameters required to host and tune homochiral AFM textures may be obtained by rational materials design of α-Fe2O3, it could emerge as a promising platform to initiate AFM topological spintronics.

Route towards stable homochiral topological textures in A -type antiferromagnets

Physical Review B American Physical Society (APS) 105:22 (2022) 224424

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli

X-ray spectroscopy for the magnetic study of the van der Waals ferromagnet CrSiTe3 in the few- and monolayer limit

2D Materials IOP Publishing (2022)

Authors:

Ryuji Fujita, Jieyi Liu, Xiaofei Hu, Yanfeng Guo, Javier Herrero-Martín, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

The study of magnetic order in few- and monolayer van der Waals materials poses a challenge to the most commonly employed magnetic characterization techniques as they normally lack magnetic sensitivity and/or lateral resolution enabling their thickness-dependent probing. Here we demonstrate the usefulness of X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements, carried out at the Cr L2,3 and Te M5 edges, for the study of the ferromagnetic semiconductor CrSiTe3 (CST) in the form of single- and few-layer flakes. By scanning the sample under the incident X-ray beam, a map of the exfoliated system was obtained, which reproduced the optical micrographs showing the detailed distribution and thicknesses of the flakes. In this way, XAS/XMCD was performed at selected sample areas, revealing the thickness-resolved spectroscopic and magnetic properties of the flakes, such as the spin and orbital magnetic moments. The spin moment, in line with the saturation field, is decreasing with film thickness, revealing a single-domain and out-of-plane magnetization for the thinnest films. For CST, the electronic properties are governed by the strong covalent bond between the Cr 3d(eg) and Te 5p states, giving rise to a superexchange scenario. We observed a gradually increasing ratio of orbital to spin moment for thinner flakes, which could be due to a further increase of the covalent mixing. Hysteresis loops were recorded at the Cr L3 edge, showing an open loop for 10 down to ~3 layers, while the bulk shows a wasp-waist shaped loop. With the transition temperature from the soft to the hard ferromagnetic state decreasing with thickness, the monolayer shows a narrowed, closed loop at 10 K, suggesting its transition temperature >10 K. Our study demonstrates the unique capabilities of XAS/XMCD for the study of few-layer van der Waals magnets, correlation and ferromagnetism in CST.