LIRIS: demonstrating how small satellites can revolutionise lunar science data sets
Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 13546 (2025) 135460d-135460d-9
Constraining Exoplanetary Clouds with Jupiter Observations: Insights from Juno & JWST
Copernicus Publications (2025)
Global Distribution and Seasonality of Martian Atmospheric HCl Explained Through Heterogeneous Chemistry
Geophysical Research Letters Wiley 52:6 (2025) e2024GL111059
Abstract:
Recent observations from the ExoMars Trace Gas Orbiter (TGO) have revealed the presence of hydrogen chloride (HCl) in the martian atmosphere. HCl shows strong seasonality, primarily appearing during Mars' perihelion period before decreasing faster than projected from photolysis and gas‐phase chemistry. HCl profiles also display local anti‐correlation with water ice aerosol. One candidate explanation is heterogeneous chemistry. We present the first results from a heterogeneous chlorine chemistry scheme incorporated into a Mars global climate model (GCM), with atmospheric dust/water ice parameterized as an HCl source/sink respectively. Results were compared against a Mars GCM with gas‐phase only chlorine chemistry and observations from TGO's Atmospheric Chemistry Suite. We found that the heterogeneous scheme significantly improved the modeled HCl seasonal, latitudinal, and vertical distribution, supporting a crucial role for heterogeneous chemistry in Mars' chlorine cycle. Remaining discrepancies show that further work is needed to characterize the exact aerosol reactions involved.Global Transport of Chlorine Species in the Martian Atmosphere and the Resulting Surface Distribution of Perchlorates
Journal of Geophysical Research: Planets American Geophysical Union 130:3 (2025) e2024JE008537
Abstract:
Recent observations by instruments aboard the ExoMars Trace Gas Orbiter (TGO) have revealed the seasonal presence of hydrogen chloride ( HCl $\text{HCl}$ ) in the Martian atmosphere. This discovery may have important implications for Martian photochemistry as chlorine species are chemically active, and it may provide a link between the atmosphere and known surface reservoirs of chlorine. However, the global distribution of atmospheric HCl $\text{HCl}$ is unknown beyond the very sparse TGO observations, and the source and sink processes driving the observed variability of HCl $\text{HCl}$ are not currently understood. We used a Martian global climate model to investigate, for the first time, the spatial distribution of chlorine species in the Martian atmosphere, and the resulting distribution of surface perchlorates formed via adsorption of atmospheric chlorine species. We adapted an existing Martian photochemical scheme to include gas‐phase chlorine chemistry with HCl as the source species, and the resulting atmospheric perchloric acid was allowed to deposit onto the Martian surface via a heterogeneous adsorption scheme. We found that odd‐oxygen ( O , O 3 $\mathrm{O},{\mathrm{O}}_{3}$ ) and odd‐hydrogen ( H , OH , HO 2 $\mathrm{H},\text{OH},{\text{HO}}_{2}$ ) species play a major role in controlling the distribution of atmospheric chorine species. Surface perchlorate deposition was found to occur preferentially at high latitudes; in the tropics, the perchlorate distribution was anti‐correlated with surface thermal inertia and agreed qualitatively with observations of surface chlorine. Our model predicted a relative enhancement of HCl in polar regions, but it did not reproduce the observed strong seasonality of HCl, suggesting that heterogeneous chemistry may be required to explain the observed chlorine cycle.Power System for a Venus Aerobot
Institute of Electrical and Electronics Engineers (IEEE) 00 (2025) 1-14