What goes on inside the Mars north polar vortex?

(2025)

Authors:

Kevin Olsen, Bethan Gregory, Franck Montmessin, Lucio Baggio, Franck Lefèvre, Oleg Korablev, Alexander Trokhimovsky, Anna Fedorova, Denis Belyaev, Juan Alday, Armin Kleinböhl

Abstract:

Mars has an axial tilt of 25.2°, comparable to that on Earth of 23.4°. This gives rise to very similar seasons, and even leads to our definition of Martian time, aligning the solar longitudes (Ls) such that Ls 0° and 180° occur at the equinoxes. In the northern hemisphere, between the equinoxes, the north polar region experiences polar days without darkness in spring and summer, and days of total darkness in the fall and winter. The dark polar winters give rise to a polar vortex that encircles the polar region and encircles an atmosphere of very cold and dry air bound within (1-3).The Atmospheric Chemistry Suite (ACS) mid-infrared channel (MIR) on the ExoMars Trace Gas Orbiter (TGO; 4) operates in solar occultation mode in which the Sun is used as a light source when the atmosphere lies between the Sun and TGO. The tangent point locations of ACS MIR observation necessarily lie on the solar terminator on Mars. At the poles when either polar night or polar day are experienced, there is no terminator, and solar occultations are restricted to outside such a region. The latitudinal distribution of ACS MIR solar occultations during the north polar fall and winter over four Mars years (MYs) is shown in Fig. 1. The furthest northern extent of observations occurs at the equinoxes, and falling northern boundary is seen between, as the north pole points further away from the Sun (similarly in the south, where it is polar day).While direct observations of the north polar vortex are forbidden with solar occultations, the polar vortex is not perfectly circular (1-3) and occasionally, descends into the illuminated region where we are making observations. The characteristic signs that we are sampling the polar vortex are a sudden drop in temperature below 20 km, the almost complete reduction in water vapour volume mixing ratio (VMR) and an enhancement in ozone VMR, the latter of which is extremely rare (5).To measure the extent of the polar vortex, we use temperature measurements from the Mars Climate Sounder (MCS; 6, 7) on Mars Reconnaissance Orbiter (MRO). We define the polar vortex as the average temperature over 10-20 km being within a boundary of 170 K (30). We introduce a novel technique to determine this boundary during a 1° Ls period using an alpha hull. We show that we can accurately measure the area of the polar vortex and achieve similar results to (3). The impact of the southern summer and dust activity is clearly visible in the time series of the northern polar vortex extent, leading to maxima occurring at the equinoxes, and shrinking toward perihelion. The impact of global dust storms and the late season dust storms are also pronounced.We will show the vertical structure of water vapour and ozone VMRs inside and outside the north polar vortex, the results of a search for polar vortex temperatures from the near-infrared channel (NIR) of ACS (along the dark blue dots in Fig. 1), and show whether these results agree with the polar vortex extent measurements using MCS.       Figure 1: The latitudes of ACS MIR solar occultation as a function of time (solar longitude Ls) during northern fall (Ls 180-270°) and winter (Ls 270-360°). Data from Mars years (MYs) 34-37 are indicated with colours. The region of interest in searching for polar vortex excursions is highlighted in blue.References:(1) Streeter, P. M. et al. J. Geophys. Res. 126, e2020JE006774 (2021).(2) Streeter, P. M., Lewis, S. R., Patel, M. R., Holmes, J. A., & Rajendran, K. Icarus 409, 115864 (2024).(3) Alsaeed, N.R., Hayne, P. O. & Concepcion, V. J. Geophys. Res. 129, e2024JE008397 (2024).(4) Korablev, O. et al. Space Sci. Rev. 214, 7 (2018).(5) Olsen, K. S., et al. J. Geophys. Res. 127, e2022JE007213 (2022).(6) Kleinböhl, A., et al. J. Geophys. Res., 114, E10006 (2009).(7) Kleinböhl, A., Friedson, A. J., & Schofield, J. T. J. Quant. Spectrosc. Radiat. Transfer. 187, 511-522 (2017).

 MIRMIS – The Modular Infrared Molecules and Ices Sensor for ESA’s Comet Interceptor.

(2025)

Authors:

Neil Bowles, Antti Näsilä, Tomas Kohout, Geronimo Villanueva, Chris Howe, Patrick Irwin, Antti Penttila, Alexander Kokka, Richard Cole, Sara Faggi, Aurelie Guilbert-Lepoutre, Silvia Protopapa, Aria Vitkova

Abstract:

Introduction: This presentation will describe the Modular Infrared Molecules and Ices Sensor currently in final assembly and test at the University of Oxford, UK and VTT Finland for ESA’s upcoming Comet interceptor mission.The Comet Interceptor mission: The Comet Interceptor mission [1] was selected by ESA as the first of its new “F” class of missions in June 2019 and adopted in June 2022.  Comet Interceptor (CI) aims to be the first mission to visit a long period comet, preferably, a Dynamically New Comet (DNC), a subset of long-period comets that originate in the Oort cloud and may preserve some of the most primitive material from early in our Solar System’s history. CI is scheduled to launch to the Earth-Sun L2 point with ESA’s ARIEL [2] mission in ~2029 where it will wait for a suitable DNC target.The CI mission is comprised of three spacecraft.  Spacecraft A will pass by the target nucleus at ~1000 km to mitigate against hazards caused by dust due to the wide range of possible encounter velocities (e.g. 10 – 70 km/s).  As well as acting as a science platform, Spacecraft A will deploy and provide a communications hub for two smaller spacecrafts, B1 (supplied by the Japanese space agency JAXA) and B2 that will perform closer approaches to the nucleus.  Spacecrafts B1 and B2 will make higher risk/higher return measurements but with the increased probability that they will not survive the whole encounter.The MIRMIS Instrument: The Modular InfraRed Molecules and Ices sensor (MIRMIS, Figure 1) instrument is part of the CI Spacecraft A scientific payload.  The MIRMIS consortium includes hardware contributions from Finland (VTT Finland) and the UK (University of Oxford) with members of the instrument team from the Universities of Helsinki, Lyon, NASA’s Goddard Space Flight Center, and Southwest Research Institute.MIRMIS will map the spatial distribution of temperatures, ices, minerals and gases in the nucleus and coma of the comet using covering a spectral range of 0.9 to 25 microns.  An imaging Fabry-Perot interferometer will provide maps of composition at a scale of ~180 m at closest approach from 0.9 to 1.7 microns.  A Fabry-Perot point spectrometer will make observations of the coma and nucleus at wavelengths from 2.5 to 5 microns and finally a thermal imager will map the temperature and composition of the nucleus at a spatial resolution of 260 m using a series of multi-spectral filters from 6 to 25 microns.  Figure 1: (Top) The MIRMIS instrument for ESA’s Comet Interceptor mission. (Bottom) The MIRMIS Structural Thermal model under test at University of Oxford.The MIRMIS instrument is compact (548.5 x 282.0 x 126.8 mm) and low mass (

A 3D model simulation of hydrogen chloride photochemistry on Mars: Comparison with satellite data

Astronomy & Astrophysics EDP Sciences 699 (2025) a362

Authors:

Benjamin Benne, Paul I Palmer, Benjamin M Taysum, Kevin S Olsen, Franck Lefevre

Abstract:

Context. Hydrogen chloride (HCl) was independently detected in the Martian atmosphere by the Nadir and Occultation for MArs Discovery (NOMAD) and Atmospheric Chemistry Suite (ACS) spectrometers aboard the ExoMars Trace Gas Orbiter (TGO). Photochemical models show that using gas-phase chemistry alone is insufficient to reproduce these data. Recent work has developed a heterogeneous chemical network within a 1D photochemistry model, guided by the seasonal variability in HCl. This variability includes detection almost exclusively during the dust season, a positive correlation with water vapour, and an anticorrelation with water ice. Aims. The aim of this work is to show that incorporating heterogeneous chlorine chemistry into a global 3D model of Martian photochemistry with conventional gas-phase chemistry can reproduce spatial and temporal changes in hydrogen chloride on Mars, as observed by instruments aboard the TGO. Methods. We incorporated this heterogeneous chlorine scheme into the Mars Planetary Climate Model (MPCM). After some refinements to the scheme, mainly associated with it being employed in a 3D model, we used it to model chlorine photochemistry during Mars Years (MYs) 34 and 35. These two years provide contrasting dust scenarios, with MY 34 featuring a global dust storm. We also examined correlations in the model results between HCl and other key atmospheric quantities, as well as production and loss processes, to understand the impact of different factors driving changes in HCl. Results. We find that the 3D model of Martian photochemistry using the proposed heterogeneous chemistry is consistent with the changes in HCl observed by ACS in MY 34 and MY 35, including detections and 70% of non-detections. For the remaining 30% of non-detections, model HCl is higher than the ACS detection limit due to biases associated with water vapour, dust, or water ice content at these locations. As with previous 1D model calculations, we find that heterogeneous chemistry is required to describe the loss of HCl, resulting in a lifetime of a few sols that is consistent with the observed seasonal variation in HCl. As a result of this proposed chemistry, modelled HCl is correlated with water vapour, airborne dust, and temperature, and anticorrelated with water ice. Our work shows that this chemical scheme enables the reproduction of aphelion detections in MY 35.

Ionospheric Analysis With Martian Mutual Radio Occultation

Journal of Geophysical Research Planets 130:6 (2025)

Authors:

J Parrott, H Svedhem, B Sánchez-Cano, O Witasse, C Wilson, I Müller-Wodarg

Abstract:

This study presents a comprehensive analysis of the Martian ionosphere using Mutual Radio Occultation (RO) observations between Mars Express and Trace Gas Orbiter, featuring 71 full vertical profiles out of a total of 124 measurements. Among these, 35 measurements were taken from regions with Solar Zenith Angles lower than 40°. The profiles also represent the largest data set for the lower M1 ionospheric layer during the midday ever measured. This paper has also been submitted with a comprehensive data set, which marks the first time MEX-TGO RO data has been made available to the community. Additionally, neutral temperature profiles have been extracted from the measurements. We find unexpected features in the lower thermosphere temperature behavior which we conclude is likely due to the effects of local circulation and associated dynamical heating rather than solar-controlled.

Mars Express: From the Launch Pad to a 20-Year Success Record at Mars

Space Science Reviews 221:4 (2025)

Authors:

P Martin, D Titov, C Wilson, A Cardesín-Moinelo, J Godfrey, JP Bibring, F González-Galindo, R Jaumann, A Määttänen, T Spohn, G Kminek, E Sefton-Nash

Abstract:

Mars Express was conceived and built by ESA as a successor of the unsuccessful Russian Mars-96 mission. It was planned from the onset as an orbiter and lander mission to be able to carry out long-term, remote sensing and in-situ scientific investigations of the planet Mars and its environment. As an exceptionally successful workhorse and a backbone of the Agency’s Science Programme in operation at Mars since end December 2003, Mars Express has proven to be a highly productive mission returning excellent scientific value for the investments made by ESA and its Member States. This paper is intended as the introduction to the series of papers that make this special collection. It briefly reviews the history of the mission, its science goals, its uniqueness while establishing its complementarity with other Mars missions in a collaborative context. It also lists the teams and operational aspects and innovations that made this mission a success. Then the paper highlights Mars Express’s scientific achievements throughout its 20-year lifetime. Mars Express results and discoveries continue playing an essential role in understanding the geological, atmospheric and climate evolution of the Red Planet and determining its potential past habitability. To conclude, a preview of the science and other topics covered by this collection is given. Mars Express, a pioneering mission for Europe at Mars, is currently continuing on its long scientific journey around the Red Planet.