A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere
Abstract:
We present a single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. It is based on the assumption that the upwelling internal radiation field is dominated by a surface with a uniform brightness temperature. It allows the calculation of the scattering source function for individual aerosol types, mixtures of aerosol types, and mixtures of gas and aerosol. The approximation can be applied in a Curtis-Godson radiative transfer code and is used for operational retrievals from Mars Climate Sounder measurements. Radiance comparisons with a multiple scattering model show good agreement in the mid- and far-infrared although the approximate model tends to underestimate the radiances in realistic conditions of the Martian atmosphere. Relative radiance differences are found to be about 2% in the lowermost atmosphere, increasing to ~10% in the middle atmosphere of Mars. The increasing differences with altitude are mostly due to the increasing contribution to limb radiance of scattering relative to emission at the colder, higher atmospheric levels. This effect becomes smaller toward longer wavelengths at typical Martian temperatures. The relative radiance differences are expected to produce systematic errors of similar magnitude in retrieved opacity profiles. © 2011 Elsevier Ltd.Thermal structure and dynamics of Saturn's northern springtime disturbance.
Abstract:
Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.Jovian temperature and cloud variability during the 2009-2010 fade of the South Equatorial Belt
Abstract:
Mid-infrared 7-20 μm imaging of Jupiter from ESO's Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter's South Equatorial Belt (SEB) during the 'fade' (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800. mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5. K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free 'brown barges' (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300. mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p>. 300. mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process. The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p<800mbar are plausible sources of the suppressed 4.8 and 8.6-μm emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud(p>800mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air. © 2011 Elsevier Inc.Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust
Abstract:
Recent advancements in visible to near infrared orbital measurements of the lunar surface have allowed the character and extent of the primary anorthositic crust to be studied at unprecedented spatial and spectral resolutions. Here we assess the lunar primary anorthositic crust in global context using a spectral parameter tool for Moon Mineralogy Mapper data to identify and map Fe‐bearing crystalline plagioclase based on its diagnostic 1.25 µm absorption band. This allows plagioclase‐dominated rocks, specifically anorthosites, to be unambiguously identified as well as distinguished from lithologies with minor to trace amounts of mafic minerals. Low spatial resolution global mosaics and high spatial resolution individual data strips covering more than 650 targeted craters were analyzed to identify and map the mineralogy of spectrally pure regions as small as ~400 m in size. Spectrally, pure plagioclase is identified in approximately 450 targets located across the lunar surface. Diviner thermal infrared (TIR) data are analyzed for 37 of these nearly monomineralic regions in order to understand the compositional variability of plagioclase (An#) in these areas. The average An# for each spectrally pure region is estimated using new laboratory measurements of a well‐characterized anorthite (An96) sample. Diviner TIR results suggest that the plagioclase composition across the lunar highlands is relatively uniform, high in calcium content, and consistent with plagioclase compositions found in the ferroan anorthosites (An94–98). Our results confirm that spectrally pure anorthosite is widely distributed across the lunar surface, and most exposures of the ancient anorthositic crust are concentrated in regions of thicker crust surrounding impact basins on the lunar nearside and farside. In addition, the scale of the impact basins and the global nature and distribution of pure plagioclase requires a coherent zone of anorthosite of similar composition in the lunar crust supporting its formation from a single differentiation event like a magma ocean. Our identifications of pure anorthosite combined with the GRAIL crustal thickness model suggest that pure anorthosite is currently observed at a range of crustal thickness values between 9 and 63 km and that the primary anorthositic crust must have been at least 30 km thick.