The 2003 November 14 occultation by Titan of TYC 1343-1865-1. II. Analysis of light curves

Icarus 192:2 (2007) 503-518

Authors:

A Zalucha, A Fitzsimmons, JL Elliot, J Thomas-Osip, HB Hammel, VS Dhillon, TR Marsh, FW Taylor, PGJ Irwin

Abstract:

We observed a stellar occultation by Titan on 2003 November 14 from La Palma Observatory using ULTRACAM with three Sloan filters: u′, g′, and i′ (358, 487, and 758 nm, respectively). The occultation probed latitudes 2° S and 1° N during immersion and emersion, respectively. A prominent central flash was present in only the i′ filter, indicating wavelength-dependent atmospheric extinction. We inverted the light curves to obtain six lower-limit temperature profiles between 335 and 485 km (0.04 and 0.003 mb) altitude. The i′ profiles agreed with the temperature measured by the Huygens Atmospheric Structure Instrument [Fulchignoni, M., and 43 colleagues, 2005. Nature 438, 785-791] above 415 km (0.01 mb). The profiles obtained from different wavelength filters systematically diverge as altitude decreases, which implies significant extinction in the light curves. Applying an extinction model [Elliot, J.L., Young, L.A., 1992. Astron. J. 103, 991-1015] gave the altitudes of line of sight optical depth equal to unity: 396 ± 7 and 401 ± 20  km (u′ immersion and emersion); 354 ± 7 and 387 ± 7  km (g′ immersion and emersion); and 336 ± 5 and 318 ± 4  km (i′ immersion and emersion). Further analysis showed that the optical depth follows a power law in wavelength with index 1.3 ± 0.2. We present a new method for determining temperature from scintillation spikes in the occulting body's atmosphere. Temperatures derived with this method are equal to or warmer than those measured by the Huygens Atmospheric Structure Instrument. Using the highly structured, three-peaked central flash, we confirmed the shape of Titan's middle atmosphere using a model originally derived for a previous Titan occultation [Hubbard, W.B., and 45 colleagues, 1993. Astron. Astrophys. 269, 541-563]. © 2007 Elsevier Inc. All rights reserved.

South-polar features on Venus similar to those near the north pole

Nature 450:7170 (2007) 637-640

Authors:

G Piccioni, P Drossart, A Sanchez-Lavega, R Hueso, FW Taylor, CF Wilson, D Grassi, L Zasova, M Moriconi, A Adriani, S Lebonnois, A Coradini, B Bézard, F Angrilli, G Arnold, KH Baines, G Bellucci, J Benkhoff, JP Bibring, A Blanco, MI Blecka, RW Carlson, A Di Lellis, T Encrenaz, S Erard, S Fonti, V Formisano, T Fouchet, R Garcia, R Haus, J Helbert, NI Ignatiev, PGJ Irwin, Y Langevin, MA Lopez-Valverde, D Luz, L Marinangeli, V Orofino, AV Rodin, MC Roos-Serote, B Saggin, DM Stam, D Titov, G Visconti, M Zambelli, E Ammannito, A Barbis, R Berlin, C Bettanini, A Boccaccini, G Bonnello, M Bouye, F Capaccioni, A Cardesin Moinelo, F Carraro, G Cherubini, M Cosi, M Dami, M De Nino, D Del Vento, M Di Giampietro, A Donati, O Dupuis, S Espinasse, A Fabbri, A Fave, IF Veltroni, G Filacchione, K Garceran, Y Ghomchi, M Giustini, B Gondet, Y Hello, F Henry, S Hofer, G Huntzinger, J Kachlicki, R Knoll, K Driss, A Mazzoni, R Melchiorri, G Mondello, F Monti, C Neumann, F Nuccilli, J Parisot, C Pasqui, S Perferi, G Peter, A Piacentino, C Pompei, JM Reess, JP Rivet, A Romano, N Russ, M Santoni, A Scarpelli, A Semery, A Soufflot, D Stefanovitch

Abstract:

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition. ©2007 Nature Publishing Group.

A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express.

Nature 450:7170 (2007) 641-645

Authors:

P Drossart, G Piccioni, JC Gérard, MA Lopez-Valverde, A Sanchez-Lavega, L Zasova, R Hueso, FW Taylor, B Bézard, A Adriani, F Angrilli, G Arnold, KH Baines, G Bellucci, J Benkhoff, JP Bibring, A Blanco, MI Blecka, RW Carlson, A Coradini, A Di Lellis, T Encrenaz, S Erard, S Fonti, V Formisano, T Fouchet, R Garcia, R Haus, J Helbert, NI Ignatiev, P Irwin, Y Langevin, S Lebonnois, D Luz, L Marinangeli, V Orofino, AV Rodin, MC Roos-Serote, B Saggin, DM Stam, D Titov, G Visconti, M Zambelli, C Tsang, VIRTIS-Venus Express Technical Team, Eleonora Ammannito, Alessandra Barbis, Rainer Berlin, Carlo Bettanini, Angelo Boccaccini, Guillaume Bonnello, Marc Bouyé, Fabrizio Capaccioni, Alejandro Cardesin, Francesco Carraro, Giovanni Cherubini, Massimo Cosi, Michele Dami, Maurizio De Nino, Davide Del Vento, Marco Di Giampietro, Alessandro Donati, Olivier Dupuis, Sylvie Espinasse, Anna Fabbri, Agnès Fave, Iacopo Ficai Veltroni, Gianrico Filacchione, Katia Garceran, Yamina Ghomchi, Maurizio Giustizi, Brigitte Gondet, Yann Hello, Florence Henry, Stefan Hofer, Gerard Huntzinger, Juergen Kachlicki, René Knoll, Driss Kouach, Alessandro Mazzoni, Riccardo Melchiorri, Giuseppe Mondello, Francesco Monti, Christian Neumann, Fabrizio Nuccilli, Jérôme Parisot, Claudio Pasqui, Stefano Perferi, Gisbert Peter, Alain Piacentino, Carlo Pompei, Jean-Michel Réess, Jean-Pierre Rivet, Antonio Romano, Natalie Russ, Massimo Santoni, Adelmo Scarpelli, Alain Sémery, Alain Soufflot, Douchane Stefanovitch, Enrico Suetta, Fabio Tarchi, Nazzareno Tonetti, Federico Tosi, Bernd Ulmer

Abstract:

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.

Characteristics of Titan's stratospheric aerosols and condensate clouds from Cassini CIRS far-infrared spectra

Icarus 191 (2007) 223-235

Authors:

NE Bowles, N A Teanby, P G J Irwin, R de Kok

Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements

Icarus 190:2 (2007) 556-572

Authors:

CJA Howett, PGJ Irwin, NA Teanby, A Simon-Miller, SB Calcutt, LN Fletcher, R de Kok

Abstract:

These are the first results from nadir studies of meridional variations in the abundance of stratospheric acetylene and ethane from Cassini/CIRS data in the southern hemisphere of Saturn. High resolution, 0.5 cm-1, CIRS data was used from three data sets taken in June-November 2004 and binned into 2° wide latitudinal strips to increase the signal-to-noise ratio. Tropospheric and stratospheric temperatures were initially retrieved to determine the temperature profile for each latitude bin. The stratospheric temperature at 2 mbar increased by 14 K from 9° to 68° S, including a steep 4 K rise between 60° and 68° S. The tropospheric temperatures showed significantly more meridional variation than the stratospheric ones, the locations of which are strongly correlated to that of the zonal jets. Stratospheric acetylene abundance decreases steadily from 30 to 68° S, by a factor of 1.8 at 2.0 mbar. Between 18° and 30° S the acetylene abundance increases at 2.0 mbar. Global values for acetylene have been calculated as (1.9 ± 0.19) × 10-7 at 2.0 mbar, (2.6 ± 0.27) × 10-7 at 1.6 mbar and (3.1 ± 0.32) × 10-7 at 1.4 mbar. Global values for ethane are also determined and found to be (1.6 ± 0.25) × 10-5 at 0.5 mbar and (1.4 ± 0.19) × 10-5 at 1.0 mbar. Ethane abundance in the stratosphere increases towards the south pole by a factor of 2.5 at 2.0 mbar. The increase in stratospheric ethane is especially pronounced polewards of 60° S at 2.0 mbar. The increase of stratospheric ethane towards the south pole supports the presence of a meridional wind system in the stratosphere of Saturn. © 2007 Elsevier Inc. All rights reserved.