Multispectral imaging observations of Neptune's cloud structure with Gemini-North

Icarus 216:1 (2011) 141-158

Authors:

PGJ Irwin, NA Teanby, GR Davis, LN Fletcher, GS Orton, D Tice, J Hurley, SB Calcutt

Abstract:

Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477-1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15-0.25″. The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune's atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2. bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08. bar in the bright mid-latitude region at 20-40°S to as deep as 0.2. bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator. A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus' atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g∼ 0.6-0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune's south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2. bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1. h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere. © 2011 Elsevier Inc.

Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1μm nightside spectroscopy

Icarus 214:2 (2011) 510-533

Authors:

LN Fletcher, KH Baines, TW Momary, AP Showman, PGJ Irwin, GS Orton, M Roos-Serote, C Merlet

Abstract:

The latitudinal variation of Saturn's tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1μm thermal emission spectroscopy on the planet's nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn's cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn's NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p<1.3bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck). © 2011 Elsevier Inc.

A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere

Journal of Quantitative Spectroscopy and Radiative Transfer 112:10 (2011) 1568-1580

Authors:

A Kleinböhl, JT Schofield, WA Abdou, PGJ Irwin, RJ de Kok

Abstract:

We present a single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. It is based on the assumption that the upwelling internal radiation field is dominated by a surface with a uniform brightness temperature. It allows the calculation of the scattering source function for individual aerosol types, mixtures of aerosol types, and mixtures of gas and aerosol. The approximation can be applied in a Curtis-Godson radiative transfer code and is used for operational retrievals from Mars Climate Sounder measurements. Radiance comparisons with a multiple scattering model show good agreement in the mid- and far-infrared although the approximate model tends to underestimate the radiances in realistic conditions of the Martian atmosphere. Relative radiance differences are found to be about 2% in the lowermost atmosphere, increasing to ~10% in the middle atmosphere of Mars. The increasing differences with altitude are mostly due to the increasing contribution to limb radiance of scattering relative to emission at the colder, higher atmospheric levels. This effect becomes smaller toward longer wavelengths at typical Martian temperatures. The relative radiance differences are expected to produce systematic errors of similar magnitude in retrieved opacity profiles. © 2011 Elsevier Ltd.

Thermal structure and dynamics of Saturn's northern springtime disturbance.

Science 332:6036 (2011) 1413-1417

Authors:

Leigh N Fletcher, Brigette E Hesman, Patrick GJ Irwin, Kevin H Baines, Thomas W Momary, Agustin Sanchez-Lavega, F Michael Flasar, Peter L Read, Glenn S Orton, Amy Simon-Miller, Ricardo Hueso, Gordon L Bjoraker, Andrei Mamoutkine, Teresa del Rio-Gaztelurrutia, Jose M Gomez, Bonnie Buratti, Roger N Clark, Philip D Nicholson, Christophe Sotin

Abstract:

Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.

Jovian temperature and cloud variability during the 2009-2010 fade of the South Equatorial Belt

Icarus 213:2 (2011) 564-580

Authors:

LN Fletcher, GS Orton, JH Rogers, AA Simon-Miller, I de Pater, MH Wong, O Mousis, PGJ Irwin, M Jacquesson, PA Yanamandra-Fisher

Abstract:

Mid-infrared 7-20 μm imaging of Jupiter from ESO's Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter's South Equatorial Belt (SEB) during the 'fade' (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800. mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5. K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free 'brown barges' (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300. mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p>. 300. mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process. The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p<800mbar are plausible sources of the suppressed 4.8 and 8.6-μm emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud(p>800mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air. © 2011 Elsevier Inc.