The science of EChO

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 6:S276 (2010) 359-370

Authors:

Giovanna Tinetti, James Y-K Cho, Caitlin A Griffith, Olivier Grasset, Lee Grenfell, Tristan Guillot, Tommi T Koskinen, Julianne I Moses, David Pinfield, Jonathan Tennyson, Marcell Tessenyi, Robin Wordsworth, Alan Aylward, Roy van Boekel, Angioletta Coradini, Therese Encrenaz, Ignas Snellen, Maria R Zapatero-Osorio, Jeroen Bouwman, Vincent Coudé du Foresto, Mercedes Lopez-Morales, Ingo Mueller-Wodarg, Enric Pallé, Franck Selsis, Alessandro Sozzetti, Jean-Philippe Beaulieu, Thomas Henning, Michael Meyer, Giuseppina Micela, Ignasi Ribas, Daphne Stam, Mark Swain, Oliver Krause, Marc Ollivier, Emanuele Pace, Bruce Swinyard, Peter AR Ade, Nick Achilleos, Alberto Adriani, Craig B Agnor, Cristina Afonso, Carlos Allende Prieto, Gaspar Bakos, Robert J Barber, Michael Barlow, Peter Bernath, Bruno Bézard, Pascal Bordé, Linda R Brown, Arnaud Cassan, Céline Cavarroc, Angela Ciaravella, Charles Cockell, Athéna Coustenis, Camilla Danielski, Leen Decin, Remco De Kok, Olivier Demangeon, Pieter Deroo, Peter Doel, Pierre Drossart, Leigh N Fletcher, Matteo Focardi, Francois Forget, Steve Fossey, Pascal Fouqué, James Frith, Marina Galand, Patrick Gaulme, Jonay I González Hernández, Davide Grassi, Matt J Griffin, Ulrich Grözinger, Manuel Guedel, Pactrick Guio, Olivier Hainaut, Robert Hargreaves, Peter H Hauschildt, Kevin Heng, David Heyrovsky, Ricardo Hueso, Pat Irwin, Lisa Kaltenegger, Patrick Kervella, David Kipping, Geza Kovacs, Antonino La Barbera, Helmut Lammer, Emmanuel Lellouch, Giuseppe Leto, Mercedes Lopez Morales, Miguel A Lopez Valverde, Manuel Lopez-Puertas, Christophe Lovi, Antonio Maggio, Jean-Pierre Maillard, Jesus Maldonado Prado, Jean-Baptiste Marquette, Francisco J Martin-Torres, Pierre Maxted, Steve Miller, Sergio Molinari, David Montes, Amaya Moro-Martin, Olivier Mousis, Napoléon Nguyen Tuong, Richard Nelson, Glenn S Orton, Eric Pantin, Enzo Pascale, Stefano Pezzuto, Ennio Poretti, Raman Prinja, Loredana Prisinzano, Jean-Michel Réess, Ansgar Reiners, Benjamin Samuel, Jorge Sanz Forcada, Dimitar Sasselov, Giorgio Savini, Bruno Sicardy, Alan Smith, Lars Stixrude, Giovanni Strazzulla, Gautam Vasisht, Sandrine Vinatier, Serena Viti, Ingo Waldmann, Glenn J White, Thomas Widemann, Roger Yelle, Yuk Yung, Sergey Yurchenko

Venus Cloud Properties from Venus Express VIRTIS Observations

AAS/Division for Planetary Sciences Meeting Abstracts #42 42 (2010) 994-994

Authors:

J Barstow, FW Taylor, CCC Tsang, CF Wilson, PGJ Irwin, P Drossart, G Piccioni

Global silicate mineralogy of the moon from the diviner lunar radiometer

Science 329:5998 (2010) 1507-1509

Authors:

BT Greenhagen, PG Lucey, MB Wyatt, TD Glotch, CC Allen, JA Arnold, JL Bandfield, NE Bowles, KLD Hanna, PO Hayne, E Song, IR Thomas, DA Paige

Abstract:

We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

Highly silicic compositions on the moon

Science 329:5998 (2010) 1510-1513

Authors:

TD Glotch, PG Lucey, JL Bandfield, BT Greenhagen, IR Thomas, RC Elphic, N Bowles, MB Wyatt, CC Allen, KD Hanna, DA Paige

Abstract:

Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies.

Potential for stratospheric Doppler windspeed measurements of Jupiter by sub-millimetre spectroscopy

Planetary and Space Science 58:11 (2010) 1489-1499

Authors:

J Hurley, PGJ Irwin, BN Ellison, R De Kok, SB Calcutt, NA Teanby, LN Fletcher, R Irshad

Abstract:

The sub-millimetre/microwave range of the spectrum has been exploited in the field of Earth observation by many instruments over the years and has provided a plethora of information on atmospheric chemistry and dynamicshowever, this spectral range has not been fully explored in planetary science, having been exclusively employed to carry out ground-based measurements. To this end, a sub-millimetre instrument, the Orbiter Terahertz Infrared Spectrometer (ORTIS), is studied by the University of Oxford and the Rutherford Appleton Laboratory, to meet the requirements of the European Space Agency's Cosmic Visions 2015-2025 programme-in particular, the Europa Jupiter System Mission (EJSM), which has the European Space Agency and the National Aeronautics and Space Administration as partners. ORTIS is designed to measure atmospheric temperature, the abundance of stratospheric water vapour and other jovian gases, and is intended to be capable of retrieving vertical profiles of horizontal windspeed in the stratosphere for the first time, from Doppler-shifted emission lines measured at high spectral resolution. In this work, a preliminary study and implementation of the estimation of windspeed profiles on simulated spectra representative of Jupiter is presented, detailing the development of the retrieval algorithm, showing that a sub-millimetre instrument such as ORTIS should be able to retrieve windspeed profiles to an accuracy of about 15 m/s between 70 and 200 km/0.1-10 mb using a single near-limb measurement, for expected noise amplitudes. © 2010 Elsevier B.V.. All rights reserved.