Diviner lunar radiometer observations of cold traps in the moon's south polar region
Science 330:6003 (2010) 479-482
Abstract:
Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.Infrared limb sounding of Titan with the cassini composite infrared spectrometer: Effects of the mid-IR detector spatial responses: Errata
Applied Optics 49:29 (2010) 5575-5576
Abstract:
We provide a revised Table 5 for the paper by Nixon et al. [Appl. Opt. 48, 1912 (2009)], in which the abundances of 13CO2 and C 18O were incorrect . © 2010 Optical Society of America.Far-infrared opacity sources in Titan's troposphere reconsidered
Icarus 209:2 (2010) 854-857
Abstract:
We use Cassini far-infrared limb and nadir spectra, together with recent Huygens results, to shed new light on the controversial far-infrared opacity sources in Titan's troposphere. Although a global cloud of large CH4 ice particles around an altitude of 30km, together with an increase in tropospheric haze opacity with respect to the stratosphere, can fit nadir and limb spectra well, this cloud does not seem consistent with shortwave measurements of Titan. Instead, the N2-CH4 collision-induced absorption coefficients are probably underestimated by at least 50% for low temperatures. © 2010 Elsevier Inc.The science of EChO
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 6:S276 (2010) 359-370
Venus Cloud Properties from Venus Express VIRTIS Observations
AAS/Division for Planetary Sciences Meeting Abstracts #42 42 (2010) 994-994