Methane and its isotopologues on Saturn from Cassini/CIRS observations
Icarus 199:2 (2009) 351-367
Abstract:
High spectral resolution observations from the Cassini Composite Infrared Spectrometer [Flasar, F.M., and 44 colleagues, 2004. Space Sci. Rev. 115, 169-297] are analysed to derive new estimates for the mole fractions of CH4, CH3D and 13CH4 of (4.7 ± 0.2) × 10-3, (3.0 ± 0.2) × 10-7 and (5.1 ± 0.2) × 10-5 respectively. The mole fractions show no hemispherical asymmetries or latitudinal variability. The analysis combines data from the far-IR methane rotational lines and the mid-IR features of methane and its isotopologues, using both the correlated-k retrieval algorithm of Irwin et al. [Irwin, P., and 9 colleagues, 2008. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150] and a line-by-line approach to evaluate the reliability of the retrieved quantities. C/H was found to be enhanced by 10.9 ± 0.5 times the solar composition of Grevesse et al. [Grevesse, N., Asplund, M., Sauval, A., 2007. Space Sci. Rev. 130 (1), 105-114], 2.25 ± 0.55 times larger than the enrichment on Jupiter, and supporting the increasing fractional core mass with distance from the Sun predicted by the core accretion model of planetary formation. A comparison of the jovian and saturnian C/N, C/S and C/P ratios suggests different reservoirs of the trapped volatiles in a primordial solar nebula whose composition varies with distance from the Sun. This is supported by our derived D/H ratio in methane of (1.6 ± 0.2) × 10-5, which appears to be smaller than the jovian value of Lellouch et al. [Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., de Graauw, T., 2001. Astron. Astrophys. 370, 610-622]. Mid-IR emission features provided an estimate of 12C / 13C = 91.8-7.8+8.4, which is consistent with both the terrestrial ratio and jovian ratio, suggesting that carbon was accreted from a shared reservoir for all of the planets. © 2008 Elsevier Inc.Spatial variability of carbon monoxide in venus' mesosphere from venus express/visible and infrared thermal imaging spectrometer measurements
Journal of Geophysical Research: Planets 114:5 (2009)
Abstract:
[1] Observations of Venus' mesosphere by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)-M instrument of Venus Express have been used to investigate the spatial distribution of CO above Venus' nightside cloud tops by fitting the CO absorption in the (1-0) CO band around 4.7 μm. We find little spatial variation in the abundance of CO at midlatitudes, with a retrieved abundance of approximately 40 ± 10 ppm just above the cloud tops between 65 and 70 km altitude. Unfortunately, we find it very difficult to constrain the abundance of CO in the cold polar collar, centered at about 70°S, as the retrieved temperature structure in the CO line-forming region masks the absorption lines. However, there is a possibility that CO increases toward the poles, as we detect a significant signature of high levels of CO over Venus' south polar dipole feature in all the observations analyzed so far. To constrain the abundance of CO more closely will require the analysis of higher-resolution VIRTIS-H observations. In addition, limb observations would greatly help to resolve any possible temperature/cloud ambiguities and allow us to assess vertical variations in the abundance of CO. Copyright 2008 by the American Geophysical Union.Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations
Journal of Geophysical Research: Planets 114:5 (2009)
Abstract:
[1] We present nightside observations of tropospheric carbon monoxide in the southern hemisphere near the 35 km height level, the first from Venus Express/Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)-M-IR. VIRTIS-M data from 2.18 to 2.50 μm, with a spectral resolution of 10 nm, were used in the analysis. Spectra were binned, with widths ranging from 5 to 30 spatial pixels, to increase the signal-to-noise ratio, while at the same time reducing the total number of retrievals required for complete spatial coverage. We calculate the mean abundance for carbon monoxide at the equator to be 23 ± 2 ppm. The CO concentration increases toward the poles, peaking at a latitude of approximately 60°S, with a mean value of 32 ± 2 ppm. This 40% equator-to-pole increase is consistent with the values found by Collard et al. (1993) from Galileo/NIMS observations. Observations suggest an overturning in this CO gradient past 60°S, declining to abundances seen in the midlatitudes. Zonal variability in this peak value has also been measured, varying on the order of 10% (∼3 ppm) at different longitudes on a latitude circle. The zonal variability of the CO abundance has possible implications for the lifetime of CO and its dynamics in the troposphere. This work has definitively established a distribution of tropospheric CO, which is consistent with a Hadley cell circulation, and placed limits on the latitudinal extent of the cell. Copyright 2008 by the American Geophysical Union.Dynamical processes
Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 141-+
Evolution processes in outer planet atmospheres
Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 59-71