Correction to: Modelling the seasonal cycle of Uranus's colour and magnitude, and comparison with Neptune

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:3 (2024) 4701-4701

Authors:

Patrick IRWIN, jack DOBINSON, Arjuna James, Nicholas Teanby, Amy Simon, Leigh Fletcher, Michael Roman, Glenn Orton, Michael Wong, Daniel Toledo, Santiago Perez-Hoyos, Julie Beck

Variability in Titan's Mesospheric HCN and Temperature Structure as Observed by ALMA

(2024)

Authors:

AE Thelen, CA Nixon, R Cosentino, MA Cordiner, NA Teanby, CE Newman, PGJ Irwin, SB Charnley

Improved Design of an Advanced Ice Giants Net Flux Radiometer

Space Science Reviews 220:1 (2024)

Authors:

S Aslam, SB Calcutt, T Hewagama, PG Irwin, C Nixon, G Quilligan, MC Roos-Serote, G Villanueva

Abstract:

In this paper, the improved design of an Ice Giants Net Flux Radiometer (IG-NFR), for inclusion as a payload on a future Uranus probe mission, is given. IG-NFR will measure the net radiation flux, in seven spectral bands, each with a 10° Field-Of-View (FOV) and in five viewing angles as a function of altitude. Net flux measurements within spectral filter bands, ranging from solar to far-infrared, will help derive radiative heating and cooling profiles, and will significantly contribute to our understanding of the planet’s atmospheric heat balance and structure, tropospheric 3-D flow, and compositions and opacities of the cloud layers. The IG-NFR uses an array of non-imaging Winston cones integrated to a matched thermopile detector Focal Plane Assembly (FPA), with individual bandpass filters and windows, housed in a vacuum micro-vessel. The FPA thermopile detector signals are read out in parallel mode, amplified and processed by a multi-channel digitizer application specific integrated circuit (MCD ASIC) under field programmable gate array (FPGA) control. The vacuum micro-vessel rotates providing chopping between FOV’s of upward and downward radiation fluxes. This unique design allows for small net flux measurements in the presence of large ambient fluxes and rapidly changing temperatures during the probe descent to ≥10 bar pressure.

The Uranus Multi-Experiment Radiometer for Haze and Clouds Characterization

Space Science Reviews Springer Nature 220:1 (2024) 6-6

Authors:

V Apéstigue, D Toledo, PGJ Irwin, P Rannou, A Gonzalo, J Martínez-Oter, J Ceballos-Cáceres, J Azcue, JJ Jiménez, E Sebastian, M Yela, M Sorribas, JR de Mingo, A Martín-Ortega, T Belenger, M Alvarez, D Vázquez-García de la Vega, S Espejo, I Arruego

The Comet Interceptor Mission.

Space science reviews Springer Nature 220:1 (2024) 9

Authors:

Geraint H Jones, Colin Snodgrass, Cecilia Tubiana, Michael Küppers, Hideyo Kawakita, Luisa M Lara, Jessica Agarwal, Nicolas André, Nicholas Attree, Uli Auster, Stefano Bagnulo, Michele Bannister, Arnaud Beth, Neil Bowles, Andrew Coates, Luigi Colangeli, Carlos Corral van Damme, Vania Da Deppo, Johan De Keyser, Vincenzo Della Corte, Niklas Edberg, Mohamed Ramy El-Maarry, Sara Faggi, Marco Fulle, Ryu Funase, Marina Galand, Charlotte Goetz, Olivier Groussin, Aurélie Guilbert-Lepoutre, Pierre Henri, Satoshi Kasahara, Akos Kereszturi, Mark Kidger, Matthew Knight, Rosita Kokotanekova, Ivana Kolmasova, Konrad Kossacki, Ekkehard Kührt, Yuna Kwon, Fiorangela La Forgia, Anny-Chantal Levasseur-Regourd, Manuela Lippi, Andrea Longobardo, Raphael Marschall, Marek Morawski, Olga Muñoz, Antti Näsilä, Hans Nilsson, Cyrielle Opitom, Mihkel Pajusalu

Abstract:

Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.