Relationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part I: climatological outlook
University of Oxford (2024)
Abstract:
Data generated for and supporting the publication: Relationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part I: climatological outlook for the Journal of Geophysical ResearchRelationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part II: quantitative correlations
University of Oxford (2024)
Abstract:
Data generated for and supporting the the Publication: Relationships between HCl, H2O, aerosols, and temperature in the Martian atmosphere Part II: quantitative correlationsPossible Effects of Volcanic Eruptions on the Modern Atmosphere of Venus.
Space science reviews 220:3 (2024) 31
Abstract:
This work reviews possible signatures and potential detectability of present-day volcanically emitted material in the atmosphere of Venus. We first discuss the expected composition of volcanic gases at present time, addressing how this is related to mantle composition and atmospheric pressure. Sulfur dioxide, often used as a marker of volcanic activity in Earth's atmosphere, has been observed since late 1970s to exhibit variability at the Venus' cloud tops at time scales from hours to decades; however, this variability may be associated with solely atmospheric processes. Water vapor is identified as a particularly valuable tracer for volcanic plumes because it can be mapped from orbit at three different tropospheric altitude ranges, and because of its apparent low background variability. We note that volcanic gas plumes could be either enhanced or depleted in water vapor compared to the background atmosphere, depending on magmatic volatile composition. Non-gaseous components of volcanic plumes, such as ash grains and/or cloud aerosol particles, are another investigation target of orbital and in situ measurements. We discuss expectations of in situ and remote measurements of volcanic plumes in the atmosphere with particular focus on the upcoming DAVINCI, EnVision and VERITAS missions, as well as possible future missions.Dynamics and clouds in planetary atmospheres from telescopic observations
Astronomy and Astrophysics Review Springer 31:1 (2023) 5
Abstract:
This review presents an insight into our current knowledge of the atmospheres of the planets Venus, Mars, Jupiter, Saturn, Uranus and Neptune, the satellite Titan, and those of exoplanets. It deals with the thermal structure, aerosol properties (hazes and clouds, dust in the case of Mars), chemical composition, global winds, and selected dynamical phenomena in these objects. Our understanding of atmospheres is greatly benefitting from the discovery in the last 3 decades of thousands of exoplanets. The exoplanet properties span a broad range of conditions, and it is fair to expect as much variety for their atmospheres. This complexity is driving unprecedented investigations of the atmospheres, where those of the solar systems bodies are the obvious reference. We are witnessing a significant transfer of knowledge in both directions between the investigations dedicated to Solar System and exoplanet atmospheres, and there are reasons to think that this exchange will intensity in the future. We identify and select a list of research subjects that can be conducted at optical and infrared wavelengths with future and currently available ground-based and space-based telescopes, but excluding those from the space missions to solar system bodies.Ultraviolet and visible reflectance spectra of Phobos and Deimos as measured by the ExoMars-TGO/Nomad-UVIS spectrometer
Journal of Geophysical Research: Planets Wiley 128:12 (2023) e2023JE008002