Clouds and Ammonia in the Atmospheres of Jupiter and Saturn Determined From a Band‐Depth Analysis of VLT/MUSE Observations

Journal of Geophysical Research E: Planets American Geophysical Union 130:1 (2025)

Authors:

Patrick GJ Irwin, Steven M Hill, Leigh N Fletcher, Charlotte Alexander, John H Rogers

Lunar thermal mapper ground testing calibration data

University of Oxford (2025)

Abstract:

Ground test data from the Lunar Thermal Mapper instrument. Described in Bowles et al. 2025 submitted to JGR Planets.

archNEMESIS: An Open-Source Python Package for Analysis of Planetary Atmospheric Spectra

Journal of Open Research Software Ubiquity Press 13:1 (2025)

Authors:

Juan Alday, Joseph Penn, Patrick Irwin, Jonathon Mason, Jingxuan Yang, Jack Dobinson

Abstract:

ArchNEMESIS is an open-source Python package developed for the analysis of remote sensing spectroscopic observations of planetary atmospheres. It is based on the widely used NEMESIS radiative transfer and retrieval tool, which has been extensively used for the investigation of a wide variety of planetary environments. The main goal of archNEMESIS is to provide the capabilities of its Fortran-based predecessor, keeping or exceeding the efficiency in the calculations, and benefitting from the advantages Python tools provide in terms of usability and portability. ArchNEMESIS enables users to compute synthetic spectra for a wide variety of planetary atmospheres, supporting multiple spectral ranges, viewing geometries (e.g., nadir, limb, and solar occultation), and radiative transfer scenarios, including multiple scattering. Furthermore, it provides tools to fit observed spectra and retrieve atmospheric and surface parameters using both optimal estimation and nested sampling retrieval schemes. The code, stored in a public GitHub repository under a GPL-v3.0 license, is accompanied by detailed documentation available at https://archnemesis.readthedocs.io/.

A Detailed Study of Jupiter’s Great Red Spot over a 90-day Oscillation Cycle

The Planetary Science Journal IOP Publishing 5:10 (2024) 223

Authors:

Amy A Simon, Michael H Wong, Phillip S Marcus, Patrick GJ Irwin

Abstract:

Jupiter’s Great Red Spot (GRS) is known to exhibit oscillations in its westward drift with a 90-day period. The GRS was observed with the Hubble Space Telescope on eight dates over a single oscillation cycle in 2023 December to 2024 March to search for correlations in its physical characteristics over that time. Measured longitudinal positions are consistent with a 90-day oscillation in drift, but no corresponding oscillation is found in latitude. We find that the GRS size and shape also oscillate with a 90-day period, having a larger width and aspect ratio when it is at its slowest absolute drift (minimum date-to-date longitude change). The GRS’s UV and methane gas absorption-band brightness variations over this cycle were small, but the core exhibited a small increase in UV brightness in phase with the width oscillation; it is brightest when the GRS is largest. The high-velocity red collar also exhibited color changes, but out of phase with the other oscillations. Maximum interior velocities over the cycle were about 20 m s−1 larger than minimum velocities, slightly larger than the mean uncertainty of 13 m s−1, but velocity variability did not follow a simple sinusoidal pattern as did other parameters such as longitude width or drift. Relative vorticity values were compared with aspect ratios and show that the GRS does not currently follow the Kida relation.

The Visual Monitoring Camera (VMC) on Mars Express: A new science instrument made from an old webcam orbiting Mars

Planetary and Space Science Elsevier 251 (2024) 105972

Authors:

Jorge Hernández-Bernal, Alejandro Cardesín-Moinelo, Ricardo Hueso, Eleni Ravanis, Abel Burgos-Sierra, Simon Wood, Marc Costa-Sitja, Alfredo Escalante, Emmanuel Grotheer, Julia Marín-Yaseli de la Parra, Donald Merrit, Miguel Almeida, Michel Breitfellner, Mar Sierra, Patrick Martin, Dmitri Titov, Colin Wilson, Ethan Larsen, Teresa del Río-Gaztelurrutia, Agustín Sánchez-Lavega