The Impact of Scattering Clouds when Studying Exoplanet Emission Spectra with JWST

Copernicus Publications (2024)

Authors:

Jake Taylor, Vivien Parmentier, Michael Line, Graham Lee, Patrick Irwin, Suzanne Aigrain

Zonal Profiles of Jupiter's Tropospheric Abundances from Near-Infrared Juno JIRAM Spectroscopy

Copernicus Publications (2024)

Authors:

Henrik Melin, Leigh Fletcher, Patrick Irwin, Davide Grassi

The bulk mineralogy, elemental composition, and water content of the Winchcombe CM chondrite fall

Meteoritics and Planetary Science Wiley 59:5 (2024) 1006-1028

Authors:

HC Bates, AJ King, KS Shirley, E Bonsall, C Schröder, F Wombacher, T Fockenberg, RJ Curtis, NE Bowles

Constraining the global composition of D/H and 18O/16O in Martian water from SOFIA/EXES

Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2024) 2919-2932

Authors:

Juan Alday, S Aoki, C DeWitt, Franck Montmessin, J Holmes, M Patel, J Mason, Therese Encrenaz, M Richter, Patrick Irwin, F Daerden, N Terada, H Nakagawa

Abstract:

Isotopic ratios in water vapour carry important information about the water reservoir on Mars. Localised variations in these ratios can inform us about the water cycle and surface-atmosphere exchanges. On the other hand, the global isotopic composition of the atmosphere carries the imprints of the long-term fractionation, providing crucial information about the early water reservoir and its evolution throughout history. Here, we report the analysis of measurements of the D/H and 18O/16O isotopic ratios in water vapour in different seasons (𝐿S = 15◦ , 127◦ , 272◦ , 305◦ ) made with SOFIA/EXES. These measurements, free of telluric absorption, provide a unique tool for constraining the global isotopic composition of Martian water vapour. We find the maximum planetary D/H ratio in our observations during the northern summer (D/H = 5.2 ± 0.2 with respect to the Vienna Standard Mean Ocean Water, VSMOW) and to exhibit relatively small variations throughout the year (D/H = 5.0 ± 0.2 and 4.3 ± 0.4 VSMOW during the northern winter and spring, respectively), which are to first order consistent though noticeably larger than the expectations from condensation-induced fractionation. Our measurements reveal the annually-averaged isotopic composition of water vapour to be consistent with D/H = 5.0 ± 0.2 and 18O/16O = 1.09 ± 0.08 VSMOW. In addition, based on a comparison between the SOFIA/EXES measurements and the predictions from a Global Climate Model, we estimate the D/H in the northern polar ice cap to be ∼5% larger than that in the atmospheric reservoir (D/Hice = 5.3 ± 0.3 VSMOW).

Constraining the global composition of D/H and 18O/16O in Martian water using SOFIA/EXES

Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2024) 2919-2932

Authors:

J Alday, S Aoki, C DeWitt, F Montmessin, Ja Holmes, Mr Patel, Jp Mason, T Encrenaz, Mj Richter, F Daerden, N Terada, Patrick Irwin, H Nakagawa

Abstract:

Isotopic ratios in water vapour carry important information about the water reservoir on Mars. Localized variations in these ratios can inform us about the water cycle and surface–atmosphere exchanges. On the other hand, the global isotopic composition of the atmosphere carries the imprints of the long-term fractionation, providing crucial information about the early water reservoir and its evolution throughout history. Here, we report the analysis of measurements of the D/H and 18O/16O isotopic ratios in water vapour in different seasons (LS = 15◦, 127◦, 272◦, and 305◦) made with the Echelon-Cross-Echelle Spectrograph (EXES) aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). These measurements, free of telluric absorption, provide a unique tool for constraining the global isotopic composition of Martian water vapour. We find the maximum planetary D/H ratio in our observations during the northern summer (D/H = 5.2 ± 0.2 with respect to the Vienna Standard Mean Ocean Water, VSMOW) and to exhibit relatively small variations throughout the year (D/H = 5.0 ± 0.2 and 4.3 ± 0.4 VSMOW during the northern winter and spring, respectively), which are to first order consistent though noticeably larger than the expectations from condensation-induced fractionation. Our measurements reveal the annually averaged isotopic composition of water vapour to be consistent with D/H = 5.0 ± 0.2 and 18O/16O = 1.09 ± 0.08 VSMOW. In addition, based on a comparison between the SOFIA/EXES measurements and the predictions from a Global Climate Model, we estimate the D/H in the northern polar ice cap to be ∼5 per cent larger than that in the atmospheric reservoir (D/Hice = 5.3 ± 0.3 VSMOW).