Bidirectional reflectance distribution function measurements of the Winchcombe meteorite using the Visible Oxford Space Environment Goniometer

Meteoritics and Planetary Science Wiley 59:5 (2023) 1029-1042

Authors:

Rowan Curtis, Hc Bates, TJ Warren, KA Shirley, EC Brown, Aj King, NE Bowles

Abstract:

A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution function (BRDF) of the Winchcombe meteorite was measured, across a range of viewing angles—reflectance: 0°–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 90°, and 180°. The BRDF dataset was fitted using the Hapke BRDF model to (1) provide a method of comparison to other meteorites and asteroids, and (2) to produce Hapke parameter values that can be used to extrapolate the BRDF to all angles. The study deduced the following Hapke parameters for Winchcombe: w = 0.152 ± 0.030, b = 0.633 ± 0.064, and hS = 0.016 ± 0.008, demonstrating that it has a similar w value to Tagish Lake (0.157 ± 0.020) and a similar b value to Orgueil (0.671 ± 0.090). Importantly, the surface profile of the sample was characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model φ and (Formula presented.), which represent porosity and surface roughness, respectively, to be constrained as φ = 0.649 ± 0.023 and (Formula presented.) = 16.113° (at 500 μm size scale). This work serves as part of the characterization process for Winchcombe and provides a reference photometry dataset for current and future asteroid missions.

Fully Coupled Photochemistry of the Deuterated Ionosphere of Mars and Its Effects on Escape of H and D

Journal of Geophysical Research Planets American Geophysical Union (AGU) 128:7 (2023)

Authors:

Eryn Cangi, Michael Chaffin, Roger Yelle, Bethan Gregory, Justin Deighan

Spitzer IRS Observations of Titan as a Precursor to JWST MIRI Observations

PLANETARY SCIENCE JOURNAL American Astronomical Society 4:6 (2023) ARTN 114

Authors:

Brandon Park Coy, Conor A Nixon, Naomi Rowe-Gurney, Richard Achterberg, Nicholas A Lombardo, Leigh N Fletcher, Patrick Irwin

Abstract:

<jats:title>Abstract</jats:title> <jats:p>In this work, we present for the first time infrared spectra of Titan from the Spitzer Space Telescope (2004–2009). The data are from both the short wavelength–low resolution (SL; 5.13–14.29 <jats:italic>μ</jats:italic>m, <jats:italic>R</jats:italic> ∼ 60–127) and short wavelength–high resolution (SH; 9.89–19.51 <jats:italic>μ</jats:italic>m, <jats:italic>R</jats:italic> ∼ 600) channels showing the emissions of CH<jats:sub>4</jats:sub>, C<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub>, C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub>, C<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub>, C<jats:sub>3</jats:sub>H<jats:sub>4</jats:sub>, C<jats:sub>3</jats:sub>H<jats:sub>6</jats:sub>, C<jats:sub>3</jats:sub>H<jats:sub>8</jats:sub>, C<jats:sub>4</jats:sub>H<jats:sub>2</jats:sub>, HCN, HC<jats:sub>3</jats:sub>N, and CO<jats:sub>2</jats:sub>. We compare the results obtained for Titan from Spitzer to those of the Cassini Composite Infrared Spectrometer (CIRS) for the same time period, focusing on the 16.35–19.35 <jats:italic>μ</jats:italic>m wavelength range observed by the SH channel but impacted by higher noise levels in the CIRS observations. We use the SH data to provide estimated haze extinction cross sections for the 16.67–17.54 <jats:italic>μ</jats:italic>m range that are missing in previous studies. We conclude by identifying spectral features in the 16.35–19.35 <jats:italic>μ</jats:italic>m wavelength range that could be analyzed further through upcoming James Webb Space Telescope Cycle 1 observations with the Mid-Infrared Instrument (5.0–28.3 <jats:italic>μ</jats:italic>m, <jats:italic>R</jats:italic> ∼ 1500–3500). We also highlight gaps in the current spectroscopic knowledge of molecular bands, including candidate trace species such as C<jats:sub>60</jats:sub> and detected trace species such as C<jats:sub>3</jats:sub>H<jats:sub>6</jats:sub>, that could be addressed by theoretical and laboratory study.</jats:p>

Miniaturized Radiometer for an Ice Giants mission for haze and cloud characterization

Copernicus Publications (2023)

Authors:

Víctor Apéstigue, Daniel Toledo, Ignacio Arruego, Patrick Irwin, Pascal Rannou, Alejandro Gonzalo, Juan José Jiménez, Javier Martínez-Oter, Margarita Yela, Mar Sorribas, Eduardo Sebastian

Uranus from JWST: First Results

Copernicus Publications (2023)

Authors:

Michael Roman, Leigh Fletcher, Heidi Hammel, Henrik Melin, Naomi Rowe-Gurney, Jake Harkett, Oliver King, Stefanie Milam, Glenn Orton, Patrick Irwin, Julianne Moses, Imke De Pater, Laurent Lamy