Improved design of an advanced Ice Giants Net Flux Radiometer

Space Science Reviews Springer 220:1 (2024) 5

Authors:

S Aslam, Simon B Calcutt, T Hewagama, Patrick G Irwin, C Nixon, G Quilligan, MC Roos-Serote, G Villanueva

Abstract:

In this paper, the improved design of an Ice Giants Net Flux Radiometer (IG-NFR), for inclusion as a payload on a future Uranus probe mission, is given. IG-NFR will measure the net radiation flux, in seven spectral bands, each with a 10° Field-Of-View (FOV) and in five viewing angles as a function of altitude. Net flux measurements within spectral filter bands, ranging from solar to far-infrared, will help derive radiative heating and cooling profiles, and will significantly contribute to our understanding of the planet’s atmospheric heat balance and structure, tropospheric 3-D flow, and compositions and opacities of the cloud layers. The IG-NFR uses an array of non-imaging Winston cones integrated to a matched thermopile detector Focal Plane Assembly (FPA), with individual bandpass filters and windows, housed in a vacuum micro-vessel. The FPA thermopile detector signals are read out in parallel mode, amplified and processed by a multi-channel digitizer application specific integrated circuit (MCD ASIC) under field programmable gate array (FPGA) control. The vacuum micro-vessel rotates providing chopping between FOV’s of upward and downward radiation fluxes. This unique design allows for small net flux measurements in the presence of large ambient fluxes and rapidly changing temperatures during the probe descent to ≥10 bar pressure.

Modelling the seasonal cycle of Uranus’s colour and magnitude, and comparison with Neptune

Monthly Notices of the Royal Astronomical Society Oxford University Press 527:4 (2024) 11521-11538

Authors:

Patrick Irwin, Jack Dobinson, Arjuna James, Nicholas Teanby, Amy Simon, Leigh Fletcher, Michael Roman, Glenn Orton, Michael Wong, Daniel Toledo, Santiago Pérez-Hoyos, Julie Beck

Abstract:

We present a quantitative analysis of the seasonal record of Uranus’s disc-averaged colour and photometric magnitude in Strömgren b and y filters (centred at 467 and 551 nm, respectively), recorded at the Lowell Observatory from 1950 to 2016, and supplemented with HST/WFC3 observations from 2016 to 2022. We find that the seasonal variations of magnitude can be explained by the lower abundance of methane at polar latitudes combined with a time-dependent increase of the reflectivity of the aerosol particles in layer near the methane condensation level at 1 – 2 bar. This increase in reflectivity is consistent with the addition of conservatively scattering particles to this layer, for which the modelled background haze particles are strongly absorbing at both blue and red wavelengths. We suggest that this additional component may come from a higher proportion of methane ice particles. We suggest that the increase in reflectivity of Uranus in both filters between the equinoxes in 1966 and 2007, noted by previous authors, might be related to Uranus’s distance from the Sun and the production rate of dark photochemical haze products. Finally, we find that although the visible colour of Uranus is less blue than Neptune, due to the increased aerosol thickness on Uranus, and this difference is greatest at Uranus’s solstices, it is much less significant than is commonly believed due to a long-standing misperception of Neptune’s ‘true’ colour. We describe how filter-imaging observations, such as those from Voyager-2/ISS and HST/WFC3, should be processed to yield accurate true colour representations.

Relationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part II: quantitative correlations

University of Oxford (2024)

Abstract:

NB: this dataset has now been SUPERSEDED by the version at https://ora.ox.ac.uk/objects/uuid:31ee4ec6-ad9c-4804-be86-da5aba057fd2.

Data generated for and supporting the Publication: Relationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part I: climatological outlook for the Journal of Geophysics Research.

Relationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part I: climatological outlook

University of Oxford (2024)

Abstract:

Data generated for and supporting the publication: Relationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part I: climatological outlook for the Journal of Geophysical Research

Relationships between HCl, H2 O, aerosols, and temperature in the Martian atmosphere Part II: quantitative correlations

University of Oxford (2024)

Abstract:

Data generated for and supporting the the Publication: Relationships between HCl, H2O, aerosols, and temperature in the Martian atmosphere Part II: quantitative correlations