Neptune's carbon monoxide profile and phosphine upper limits from Herschel/SPIRE (vol 319, pg 86, 2019)

ICARUS 322 (2018) 261-261

Authors:

NA Teanby, PGJ Irwin, JI Moses

Neptune’s carbon monoxide profile and phosphine upper limits from Herschel/SPIRE: Implications for interior structure and formation

Icarus Elsevier 319 (2018) 86-98

Authors:

NA Teanby, Patrick GJ Irwin, JI Moses

Abstract:

On Neptune, carbon monoxide and phosphine are disequilibrium species, and their abundance profiles can provide insights into interior processes and the external space environment. Here we use Herschel/SPIRE (Spectral and Photometric Imaging REceiver) observations from 14.9–51.5 cm-1 to obtain abundances from multiple CO and PH3 spectral features. For CO, we find that nine CO bands can be simultaneously fitted using a step profile with a 0.22 ppm tropospheric abundance, a 1.03 ppm stratospheric abundance, and a step transition pressure of 0.11 bar near the tropopause. This is in broad agreement with previous studies. However, we also find that the CO spectral features could be fitted, to well within measurement errors, with a profile that contains no tropospheric CO for pressure levels deeper than 0.5 bar, which is our preferred interpretation. This differs from previous studies that have assumed CO is well mixed throughout the troposphere, which would require an internal CO source to explain and a high O/H enrichment. Our interpretation removes the requirement for extreme interior O/H enrichment in thermochemical models and can finally reconcile D/H and CO measurements. If true, the lack of lower tropospheric CO would imply a decrease in Neptune’s interior water content, favouring a silicate-rich instead of an ice-rich interior. This would be consistent with a protoplanetary ice source with a similar D/H ratio to the current solar system comet population. The upper tropospheric and stratospheric CO at pressures less than 0.5 bar could then be entirely externally sourced from a giant impact as suggested by Lellouch et al.(2005). We also derive a 3-σ upper limit for PH3 of 1.1 ppb at 0.4–0.8 bar. This is the most stringent upper limit to-date and is entirely consistent with predictions from a simple photochemical model.

A chemical survey of exoplanets with ARIEL

Experimental Astronomy Springer 46:1 (2018) 135-209

Authors:

Giovanna Tinetti, Pierre Drossart, Paul Eccleston, Paul Hartogh, Astrid Heske, Jérémy Leconte, Giusi Micela, Marc Ollivier, Paul Eccleston, Göran Pilbratt, Ludovic Puig, Diego Turrini, Neil Bowles

Abstract:

Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) has been selected by the European Space Agency as the next mediumclass science mission, M4, to address these scientific questions. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10-100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

A Hexagon in Saturn's Northern Stratosphere Surrounding the Emerging Summertime Polar Vortex

(2018)

Authors:

LN Fletcher, GS Orton, JA Sinclair, S Guerlet, PL Read, A Antunano, RK Achterberg, FM Flasar, PGJ Irwin, GL Bjoraker, J Hurley, BE Hesman, M Segura, N Gorius, A Mamoutkine, SB Calcutt

A hexagon in Saturn’s northern stratosphere surrounding the emerging summertime polar vortex

Nature Communications Springer Nature 9 (2018) 3564

Authors:

LN Fletcher, GS Orton, JA Sinclair, S Guerlet, PL Read, A Antunano, RK Achterberg, FM Flasar, Patrick Irwin, GL Bjoraker, J Hurley, BE Hesman, M Segura, N Gorius, A Mamoutkine, SB Calcutt

Abstract:

Saturn’s polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassini’s reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly formed NPSV was bounded by a strengthening stratospheric thermal gradient near 78°N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturn’s long-lived polar hexagon—which was previously expected to be trapped in the troposphere—can influence the stratospheric temperatures some 300 km above Saturn’s clouds.