An introduction to weather, climate and the energy sector
Weather Wiley (2024)
Abstract:
Weather and climate have impacts across the energy sector. This short article introduces the effects of weather on the energy sector with some specific examples and looks ahead to changes that might be seen in weather and climate services for the energy sector in the near future.Impact of ocean in-situ observations on ECMWF sub-seasonal forecasts
Frontiers in Marine Science Frontiers Media 11 (2024) 1396491
Abstract:
We assess for the first time the impact of in-situ ocean observations on European Centre for Medium-Range Weather Forecasts (ECMWF) sub-seasonal forecasts of both ocean and atmospheric conditions. A series of coupled reforecasts have been conducted for the period 1993-2015, in which different sets of ocean observations were withdrawn in the production of the ocean initial conditions. Removal of all ocean in-situ observations in the initial conditions leads to significant degradation in the forecasts of ocean surface and subsurface mean state at lead times from week 1 to week 4. The negative impact is predominantly caused by the removal of the Argo observing system in recent decades. Changes in the mean state of atmospheric variables are comparatively small but significant in the forecasts of lower and upper atmospheric circulation over large regions. Our results highlight the value of continuous, real-time in-situ observations of the surface and subsurface ocean for coupled forecasts in the sub-seasonal range.Comparison between non‐orographic gravity‐wave parameterizations used in QBOi models and Strateole 2 constant‐level balloons
Quarterly Journal of the Royal Meteorological Society Wiley (2024)
Abstract:
Gravity‐wave (GW) parameterizations from 12 general circulation models (GCMs) participating in the Quasi‐Biennial Oscillation initiative (QBOi) are compared with Strateole 2 balloon observations made in the tropical lower stratosphere from November 2019–February 2020 (phase 1) and from October 2021–January 2022 (phase 2). The parameterizations employ the three standard techniques used in GCMs to represent subgrid‐scale non‐orographic GWs, namely the two globally spectral techniques developed by Warner and McIntyre (1999) and Hines (1997), as well as the “multiwaves” approaches following the work of Lindzen (1981). The input meteorological fields necessary to run the parameterizations offline are extracted from the ERA5 reanalysis and correspond to the meteorological conditions found underneath the balloons. In general, there is fair agreement between amplitudes derived from measurements for waves with periods less than 1 $$ 1 $$ h and parameterizations. The correlation between the daily observations and the corresponding results of the parameterization can be around 0.4, which is 99 % $$ 99\% $$ significant, since 1200 days of observations are used. Given that the parameterizations have only been tuned to produce a quasi‐biennial oscillation (QBO) in the models, the 0.4 correlation coefficient of the GW momentum fluxes is surprisingly good. These correlations nevertheless vary between schemes and depend little on their formulation (globally spectral versus multiwaves for instance). We therefore attribute these correlations to dynamical filtering, which all schemes take into account, whereas only a few relate the gravity waves to their sources. Statistically significant correlations are mostly found for eastward‐propagating waves, which may be due to the fact that during both Strateole 2 phases the QBO is easterly at the altitude of the balloon flights. We also found that the probability density functions (pdfs) of the momentum fluxes are represented better in spectral schemes with constant sources than in schemes (“spectral” or “multiwaves”) that relate GWs only to their convective sources.Large Ensembles for Attribution of Dynamically-driven ExtRemes (LEADER)
Atmospheric Processes And their Role in Climate (APARC) 63:July 2024 (2024) 3-8
The attribution of February extremes over North America: A forecast-based storyline study
Journal of Climate American Meteorological Society (2024)