Tropical cyclones in global high-resolution simulations using the IPSL model
Climate Dynamics Springer Nature 62:5 (2024) 4343-4368
Earth Virtualization Engines (EVE)
Earth System Science Data Copernicus Publications 16:4 (2024) 2113-2122
Abstract:
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.Assessing observational constraints on future European climate in an out-of-sample framework
npj Climate and Atmospheric Science Springer Nature 7:1 (2024) 95
Abstract:
Observations are increasingly used to constrain multi-model projections for future climate assessments. This study assesses the performance of five constraining methods, which have previously been applied to attempt to improve regional climate projections from CMIP5-era models. We employ an out-of-sample testing approach to assess the efficacy of these constraining methods when applied to “pseudo-observational” datasets to constrain future changes in the European climate. These pseudo-observations are taken from CMIP6 simulations, for which future changes were withheld and used for verification. The constrained projections are more accurate and broadly more reliable for regional temperature projections compared to the unconstrained projections, especially in the summer season, which was not clear prior to this study. However, the constraining methods do not improve regional precipitation projections. We also analysed the performance of multi-method projections by combining the constrained projections, which are found to be competitive with the best-performing individual methods and demonstrate improvements in reliability for some temperature projections. The performance of the multi-method projection highlights the potential of combining constraints for the development of constraining methods.SPEEDY-NEMO: performance and applications of a fully-coupled intermediate-complexity climate model
Copernicus Publications (2024)
SPEEDY-NEMO: performance and applications of a fully-coupled intermediate-complexity climate model
Climate Dynamics (2024)
Abstract:
A fully-coupled general circulation model of intermediate complexity is documented. The study presents an overview of the model climatology and variability, with particular attention to the phenomenology of processes that are relevant for the predictability of the climate system on seasonal-to-decadal time-scales. It is shown that the model can realistically simulate the general circulation of the atmosphere and the ocean, as well as the major modes of climate variability on the examined time-scales: e.g. El Niño-Southern Oscillation, North Atlantic Oscillation, Tropical Atlantic Variability, Pacific Decadal Variability, Atlantic Multi-decadal Variability. Potential applications of the model are discussed, with emphasis on the possibility of generating sets of low-cost large-ensemble retrospective forecasts. We argue that the presented model is suitable to be employed in traditional and innovative model experiments that can play a significant role in future developments of seasonal-to-decadal climate prediction.