An introduction to weather, climate and the energy sector

Weather Wiley (2024)

Abstract:

Weather and climate have impacts across the energy sector. This short article introduces the effects of weather on the energy sector with some specific examples and looks ahead to changes that might be seen in weather and climate services for the energy sector in the near future.

Impact of ocean in-situ observations on ECMWF sub-seasonal forecasts

Frontiers in Marine Science Frontiers Media 11 (2024) 1396491

Authors:

Beena Balan-Sarojini, Magdalena Alonso Balmaseda, Frédéric Vitart, Christopher David Roberts, Hao Zuo, Steffen Tietsche, Michael Mayer

Abstract:

We assess for the first time the impact of in-situ ocean observations on European Centre for Medium-Range Weather Forecasts (ECMWF) sub-seasonal forecasts of both ocean and atmospheric conditions. A series of coupled reforecasts have been conducted for the period 1993-2015, in which different sets of ocean observations were withdrawn in the production of the ocean initial conditions. Removal of all ocean in-situ observations in the initial conditions leads to significant degradation in the forecasts of ocean surface and subsurface mean state at lead times from week 1 to week 4. The negative impact is predominantly caused by the removal of the Argo observing system in recent decades. Changes in the mean state of atmospheric variables are comparatively small but significant in the forecasts of lower and upper atmospheric circulation over large regions. Our results highlight the value of continuous, real-time in-situ observations of the surface and subsurface ocean for coupled forecasts in the sub-seasonal range.

Multi-decadal skill variability in predicting the spatial patterns of ENSO events

Geophysical Research Letters American Geophysical Union 51:12 (2024) e2023GL107971

Authors:

Matthew Wright, Antje Weisheimer, Tim Woollings

Abstract:

Seasonal hindcasts have previously been demonstrated to show multi-decadal variability in skill across the twentieth century in indices describing El-Niño Southern Oscillation (ENSO), which drives global seasonal predictability. Here, we analyze the skill of predicting ENSO events' magnitude and spatial pattern, in the CSF-20C coupled seasonal hindcasts in 1901–2010. We find minima in the skill of predicting the first (in 1930–1950) and second (in 1940–1960) principal components of sea-surface temperature (SST) in the tropical Pacific. This minimum is also present in the spatial correlation of SSTs, in 1930–1960. The skill reduction is explained by lower ENSO magnitude and variance in 1930–1960, as well as decreased SST persistence. The SST skill minima project onto surface winds, leading to worse predictions in coupled hindcasts compared to hindcasts using prescribed SSTs. Questions remain about the offset between the first and second principal components' skill minima, and how the skill minima impact the extra-tropics.

Multi‐Decadal Skill Variability in Predicting the Spatial Patterns of ENSO Events

Geophysical Research Letters Wiley Open Access 51:12 (2024) e2023GL107971

Authors:

MJ Wright, A Weisheimer, T Woollings

Abstract:

Seasonal hindcasts have previously been demonstrated to show multi‐decadal variability in skill across the twentieth century in indices describing El‐Niño Southern Oscillation (ENSO), which drives global seasonal predictability. Here, we analyze the skill of predicting ENSO events' magnitude and spatial pattern, in the CSF‐20C coupled seasonal hindcasts in 1901–2010. We find minima in the skill of predicting the first (in 1930–1950) and second (in 1940–1960) principal components of sea‐surface temperature (SST) in the tropical Pacific. This minimum is also present in the spatial correlation of SSTs, in 1930–1960. The skill reduction is explained by lower ENSO magnitude and variance in 1930–1960, as well as decreased SST persistence. The SST skill minima project onto surface winds, leading to worse predictions in coupled hindcasts compared to hindcasts using prescribed SSTs. Questions remain about the offset between the first and second principal components' skill minima, and how the skill minima impact the extra‐tropics.

Divergent convective outflow in ICON deep-convection-permitting and parameterised deep convection simulations

Weather and Climate Dynamics 5:2 (2024) 779-803

Authors:

Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost

Abstract:

Upper-tropospheric deep convective outflows during an event on 10–11 June 2019 over central Europe are analysed in ensembles of the operational Icosahedral Nonhydrostatic (ICON) numerical weather prediction model. Both a parameterised and an explicit representation of deep convective systems is studied. Near-linear response of deep convective outflow strength to net latent heating is found for parameterised convection, while different but physically coherent patterns of outflow variability are found in convection-permitting simulations at 1 km horizontal grid spacing. We investigate if the conceptual model for outflow strength proposed in our previous idealised large-eddy simulation (LES) study is able to explain the variation in outflow strength in a real-case scenario. Convective organisation and aggregation induce a non-linear increase in the magnitude of deep convective outflows with increasing net latent heating in convection-permitting simulations, consistent with the conceptual model. However, in contrast to expectations from the conceptual model, a dependence of the outflow strength on the dimensionality of convective overturning (two-dimensional versus three-dimensional) cannot be fully corroborated from the real-case simulations.

Our results strongly suggest that the interactions between gravity waves emitted by heating in individual deep convective elements within larger organised convective systems are of prime importance for the representation of divergent outflow strength from organised convection in numerical models.