Evidence for unidirectional nematic bond ordering in FeSe
Physical Review B American Physical Society 94:20 (2016)
Abstract:
The presence of dxz−dyz orbital ordering is often considered a hallmark of the nematic phase of Fe-based superconductors, including FeSe, but the details of the order parameter remain controversial. Here, we report a high-resolution angle-resolved photoemission spectroscopy study of single crystals of FeSe, accounting for the photon-energy dependence and making a detailed analysis of the temperature dependence. We find that the hole pocket undergoes a fourfold-symmetry-breaking distortion in the nematic phase below 90 K, but, in contrast, the changes to the electron pockets do not require fourfold symmetry breaking. Instead, there is an additional separation of the existing dxy and dxz/yz bands, which themselves are not split within resolution. These observations lead us to propose a scenario of “unidirectional nematic bond ordering” to describe the low-temperature electronic structure of FeSe, supported by good agreement with ten-orbital tight-binding model calculations.Evidence for unidirectional nematic bond ordering in FeSe
Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)
Abstract:
The lifting of $d_{xz}$-$d_{yz}$ orbital degeneracy is often considered a hallmark of the nematic phase of Fe-based superconductors, including FeSe, but its origin is not yet understood. Here we report a high resolution Angle-Resolved Photoemission Spectroscopy study of single crystals of FeSe, accounting for the photon-energy dependence and making a detailed analysis of the temperature dependence. We find that the hole pocket undergoes a fourfold-symmetry-breaking distortion in the nematic phase below 90~K, but in contrast the changes to the electron pockets do not require fourfold symmetry-breaking. Instead, there is an additional separation of the existing $d_{xy}$ and $d_{xz/yz}$ bands - which themselves are not split within resolution. These observations lead us to propose a new scenario of "unidirectional nematic bond ordering" to describe the low-temperature electronic structure of FeSe, supported by a good agreement with 10-orbital tight binding model calculations.Modeling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry
Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)
Modelling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry
(2016)
Modeling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry
Physical Review B American Physical Society 93:24 (2016) 245105