Quenched nematic criticality and two superconducting domes in an iron-based superconductor

Nature Physics Springer Science and Business Media LLC 16:1 (2020) 89-94

Authors:

Pascal Reiss, David Graf, Amir A Haghighirad, William Knafo, Loïc Drigo, Matthew Bristow, Andrew J Schofield, Amalia I Coldea

Suppression of superconductivity and enhanced critical field anisotropy in thin flakes of FeSe

npj Quantum Materials Nature Research (part of Springer Nature) (2020)

Authors:

L Farrar, M Bristow, AA Haghighirad, A McCollam, SJ Bending, AMALIA Coldea

Abstract:

FeSe is a unique superconductor that can be manipulated to enhance its superconductivity using different routes while its monolayer form grown on different substrates reaches a record high temperature for a two-dimensional system. In order to understand the role played by the substrate and the reduced dimensionality on superconductivity, we examine the superconducting properties of exfoliated FeSe thin flakes by reducing the thickness from bulk down towards 9 nm. Magnetotransport measurements performed in magnetic fields up to 16T and temperatures down to 2K help to build up complete superconducting phase diagrams of different thickness flakes. While the thick flakes resemble the bulk behaviour, by reducing the thickness the superconductivity of FeSe flakes is suppressed. In the thin limit we detect signatures of a crossover towards two-dimensional behaviour from the observation of the vortex-antivortex unbinding transition and strongly enhanced anisotropy. Our study provides detailed insights into the evolution of the superconducting properties from three-dimensional bulk behaviour towards the two-dimensional limit of FeSe in the absence of a dopant substrate.

Anomalous high-magnetic field electronic state of the nematic superconductors FeSe 1 − x S x

Physical Review Research American Physical Society 2:1 (2020) 013309

Authors:

M Bristow, P Reiss, AA Haghighirad, Z Zajicek, SHIV Singh, T Wolf, D Graf, W Knafo, A McCollam, Amalia Coldea

Abstract:

Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for superconductivity. Here, we investigate the normal transport of superconducting FeSe 1 − x S x across a nematic phase transition using high-magnetic fields up to 69 T to establish the temperature and field dependencies. We find that the nematic state is dominated by a linear resistivity at low temperatures that evolves towards Fermi-liquid behavior, depending on the composition x and the impurity level. Near the nematic end point, we find an extended temperature regime with ∼ T 1.5 resistivity, different from the behavior found near an antiferromagnetic critical point. The variation of the resistivity exponent with temperature reflects the importance of the nematoelastic coupling that can also suppress divergent critical fluctuations at the nematic end point. The transverse magnetoresistance inside the nematic phase has a ∼ H 1.55 dependence over a large magnetic field range and it displays an unusual peak at low temperatures inside the nematic phase. Our study reveals anomalous transport inside the nematic phase, influenced by both changes in the electronic structure and the scattering with the lattice and spin fluctuations.

Quantum oscillations probe the Fermi surface topology of the nodal-line semimetal CaAgAs

Physical Review Research American Physical Society 2 (2020) 012055(R)

Authors:

YH Kwan, P Reiss, Y Han, M Bristow, D Prabhakaran, D Graf, A McCollam, Siddharth Ashok Parameswaran, AI Coldea

Abstract:

Nodal semimetals are a unique platform to explore topological signatures of the unusual band structure that can manifest by accumulating a nontrivial phase in quantum oscillations. Here we report a study of the de Haas–van Alphen oscillations of the candidate topological nodal line semimetal CaAgAs using torque measurements in magnetic fields up to 45 T. Our results are compared with calculations for a toroidal Fermi surface originating from the nodal ring. We find evidence of a nontrivial π phase shift only in one of the oscillatory frequencies. We interpret this as a Berry phase arising from the semiclassical electronic Landau orbit which links with the nodal ring when the magnetic field lies in the mirror (ab) plane. Furthermore, additional Berry phase accumulates while rotating the magnetic field for the second orbit in the same orientation which does not link with the nodal ring. These effects are expected in CaAgAs due to the lack of inversion symmetry. Our study experimentally demonstrates that CaAgAs is an ideal platform for exploring the physics of nodal line semimetals and our approach can be extended to other materials in which trivial and nontrivial oscillations are present.

The key ingredients of the electronic structure of FeSe

Annual Reviews of Condensed Matter Physics, Vol. 9, 125-146, 2018 (2018)

Authors:

AI Coldea, MD Watson

Abstract:

FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here we provide an overview on the current understanding of the electronic structure of FeSe, focusing in particular on its low energy electronic structure as determined from angular resolved photoemission spectroscopy, quantum oscillations and magnetotransport measurements of single crystal samples. We discuss the unique place of FeSe amongst iron-based superconductors, being a multi-band system exhibiting strong orbitally-dependent electronic correlations and unusually small Fermi surfaces, prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure which accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multi-band multi-orbital nematic electronic structure has an impact on the understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure will help to disentangle the role of different competing interactions relevant for enhancing superconductivity.