The effect of magnetic ions and disorder on superconducting β″-(BEDT-TTF)4[(H3O)M(C2O 4)3]· C6H5NO2 salts, where M = Ga and Cr

Journal De Physique. IV : JP 114 (2004) 285-287

Authors:

AF Bangura, AI Coldea, A Ardavan, J Singleton, A Akutsu-Sato, H Akutsu, P Day

Abstract:

We report magnetotransport measurements performed in magnetic fields of up to 33 T and at low temperatures (0.45 K

The role of magnetic ions on the magnetotransport properties of the charge-transfer salts β″-BEDT-[()()] where =, Cr3+ or Fe3+

Journal of Magnetism and Magnetic Materials Elsevier BV 272-276 (2004) 1062-1064

Authors:

AI Coldea, AF Bangura, J Singleton, A Ardavan, A Akutsu-Sato, H Akutsu, S S. Turner, P Day

The role of magnetic ions on the magnetotransport properties of the charge-transfer salts beta ''-BEDT-TTF4[(H3O)M(C2O4)(3)]C5H5N where M = Ga3+, Cr3+ or Fe3+

J MAGN MAGN MATER 272-76 (2004) 1062-1064

Authors:

AI Coldea, AF Bangura, J Singleton, A Ardavan, A Akutsu-Sato, H Akutsu, SS Turner, P Day

Abstract:

We report high-field magneto transport measurements on beta''- BEDT-TTF4[(H3O)M(C2O4)(3)]C5H5N, where M = Ga3+, Cr3+ or Fe3+. In spite of the differing M ions, these compounds have very similar Fermi surfaces. We observe four distinct Shubnikov-de Haas frequencies, corresponding to four Fermi-surface pockets; the frequencies exhibit the additive relationship expected for a compensated semimetal. The compounds show paramagnetic behaviour and no superconductivity down to 0.5 K, in contrast to other materials of the same family with different solvent molecules. (C) 2003 Elsevier B.V. All rights reserved.

Fermiology of new charge-transfer salts, beta ''-(BEDT-TTF)(4)[(H3O)M(C2O4)(3)]center dot solvent where M = Ga, Cr and Fe

J PHYS IV 114 (2004) 205-209

Authors:

AI Coldea, AF Bangura, A Ardavan, J Singleton, A Akutsu-Sato, H Akutsu, SS Turner, R Day

Abstract:

We report high-field magnetotransport measurements oil beta"-(BEDT-TTF)(4)[(H3O)M(C2O4)(3)], solvent, where M=Ga3+, Cr3+ and Fe3+ and solvent=C5H5N. In spite of their differing transition metal-ions, M, the three compounds exhibit similar magnetic quantum oscillation spectra superimposed on a positive magnetoresistance. At least four independent quantum oscillation frequencies have been identified, corresponding to two different hole and electron pockets of the Fermi surface which follow the rules of a compensated metal. Observation of the small pockets could be the result of the Fermi surface reconstruction induced by a possible density wave. The effective masses are very similar for different samples and for different pockets range between m(eff) approximate to 0.5 - 1.1 m(e) whereas the Dingle temperatures varies between T-D approximate to 1.4 - 4 K. At low temperature, the longitudinal magnetoresistance violates Kohler's rule, suggesting that the interlayer transport in these quasi-2D systems cannot be related to a single scattering time and that the disorder plays an important role.

Millimetre-wave and magnetic studies on a high-spin molecule, Cr-10(OMe)(20)(O2CCMe3)(10)

J PHYS IV 114 (2004) 645-647

Authors:

S Sharmin, A Ardavan, SJ Blundell, AI Coldea, EJL McInnes, D Low

Abstract:

We report millimetre-wave and magnetic measurements on single crystals of the high-spin molecular magnet, Cr-10(OMe)(20)(O2CCMe3)(10). The susceptibility data obtained using a SQUID magnetometer indicate that this molecule has a total spin of S = 15. The temperature dependence of the magnetisation allows us to estimate the intermolecular exchange constant. The EPR spectra were obtained at different frequencies, angles and temperatures. The results are compared with numerical simulations allowing determination of the Hamiltonian parameters.