Exact bistability and time pseudo-crystallization of driven-dissipative fermionic lattices

(2022)

Authors:

Hadiseh Alaeian, Berislav Buča

A quantum-inspired approach to exploit turbulence structures

Nature Computational Science Springer Nature 2:2022 (2022) 30-37

Authors:

Nikita Gourianov, Michael Lubasch, Sergey Dolgov, van den Berg Quincy Yves, Hessam Babaee, Peyman Givi, Martin Kiffner, Dieter Jaksch

Abstract:

Understanding turbulence is key to our comprehension of many natural and technological flow processes. At the heart of this phenomenon lies its intricate multiscale nature, describing the coupling between different-sized eddies in space and time. Here we analyze the structure of turbulent flows by quantifying correlations between different length scales using methods inspired from quantum many-body physics. We present the results for interscale correlations of two paradigmatic flow examples, and use these insights along with tensor network theory to design a structure-resolving algorithm for simulating turbulent flows. With this algorithm, we find that the incompressible Navier–Stokes equations can be accurately solved even when reducing the number of parameters required to represent the velocity field by more than one order of magnitude compared to direct numerical simulation. Our quantum-inspired approach provides a pathway towards conducting computational fluid dynamics on quantum computers.

Algebraic theory of quantum synchronization and limit cycles under dissipation

SCIPOST PHYSICS 12:3 (2022) ARTN 097

Authors:

Berislav Buca, Cameron Booker, Dieter Jaksch

Squeezed lasing

Physical Review Letters American Physical Society 127:18 (2021) 183603

Authors:

Dieter Jaksch, Carlos Sánchez Muñoz

Abstract:

We introduce the concept of a squeezed laser, in which a squeezed cavity mode develops a macroscopic photonic occupation due to stimulated emission. Above the lasing threshold, the emitted light retains both the spectral purity of a laser and the photon correlations characteristic of quadrature squeezing. Our proposal, implementable in optical setups, relies on a combination of the parametric driving of the cavity and the excitation by a broadband squeezed vacuum to achieve lasing behavior in a squeezed cavity mode. The squeezed laser can find applications that go beyond those of standard lasers thanks to the squeezed character, such as the direct application in Michelson interferometry beyond the standard quantum limit, or its use in atomic metrology.

Dynamical l-bits in Stark many-body localization

(2021)

Authors:

Thivan Gunawardana, Berislav Buča