A quantum-inspired approach to exploit turbulence structures

Nature Computational Science

Authors:

Nikita Gourianov, Michael Lubasch, Sergey Dolgov, Quincy Y. van den Berg, Hessam Babaee, Peyman Givi, Martin Kiffner & Dieter Jaksch

Abstract:

Algebraic theory of quantum synchronization and limit cycles under dissipation

SCIPOST PHYSICS 12:3 (2022) ARTN 097

Authors:

Berislav Buca, Cameron Booker, Dieter Jaksch

Squeezed lasing

Physical Review Letters American Physical Society 127:18 (2021) 183603

Authors:

Dieter Jaksch, Carlos Sánchez Muñoz

Abstract:

We introduce the concept of a squeezed laser, in which a squeezed cavity mode develops a macroscopic photonic occupation due to stimulated emission. Above the lasing threshold, the emitted light retains both the spectral purity of a laser and the photon correlations characteristic of quadrature squeezing. Our proposal, implementable in optical setups, relies on a combination of the parametric driving of the cavity and the excitation by a broadband squeezed vacuum to achieve lasing behavior in a squeezed cavity mode. The squeezed laser can find applications that go beyond those of standard lasers thanks to the squeezed character, such as the direct application in Michelson interferometry beyond the standard quantum limit, or its use in atomic metrology.

Dynamical l-bits in Stark many-body localization

(2021)

Authors:

Thivan Gunawardana, Berislav Buča

Higgs mode stabilization by photoinduced long-range interactions in a superconductor

Physical Review B American Physical Society 104:14 (2021) L140503

Authors:

Hongmin Gao, Frank Schlawin, Dieter Jaksch

Abstract:

We show that low-lying excitations of a 2D Bardeen-Cooper-Schrieffer superconductor are significantly altered when coupled to an externally driven cavity, which induces controllable long-range attractive interactions between the electrons. We find that they combine nonlinearly with intrinsic local interactions to increase the Bogoliubov quasiparticle excitation energies, thus enlarging the superconducting gap. The long-range nature of the driven-cavity-induced attraction qualitatively changes the collective excitations of the superconductor. Specifically, they lead to the appearance of additional collective excitations of the excitonic modes. Furthermore, the Higgs mode is pushed into the gap and now lies below the Bogoliubov quasiparticle continuum such that it cannot decay into quasiparticles. This way, the Higgs mode's lifetime is greatly enhanced.