A templating approach to controlling the growth of coevaporated halide perovskites

ACS Energy Letters American Chemical Society 8:10 (2023) 4008-4015

Authors:

Siyu Yan, Jay B Patel, Jae Eun Lee, Karim A Elmestekawy, Sinclair R Ratnasingham, Qimu Yuan, Laura M Herz, Nakita K Noel, Michael Johnston

Abstract:

Metal halide perovskite semiconductors have shown significant potential for use in photovoltaic (PV) devices. While fabrication of perovskite thin films can be achieved through a variety of techniques, thermal vapor deposition is particularly promising, allowing for high-throughput fabrication. However, the ability to control the nucleation and growth of these materials, particularly at the charge-transport layer/perovskite interface, is critical to unlocking the full potential of vapor-deposited perovskite PV. In this study, we explore the use of a templating layer to control the growth of coevaporated perovskite films and find that such templating leads to highly oriented films with identical morphology, crystal structure, and optoelectronic properties independent of the underlying layers. Solar cells incorporating templated FA0.9Cs0.1PbI3–xClx show marked improvements with steady-state power conversion efficiency over 19.8%. Our findings provide a straightforward and reproducible method of controlling the charge-transport layer/coevaporated perovskite interface, further clearing the path toward large-scale fabrication of efficient PV devices.

Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes

Advanced Functional Materials Wiley 33:51 (2023) 2305283

Authors:

Am Ulatowski, Ka Elmestekawy, Jb Patel, Nk Noel, S Yan, H Kraus, Pg Huggard, Mb Johnston, Laura Herz

Abstract:

Metal-halide perovskites have proven to be a versatile group of semiconductors for optoelectronic applications, with ease of bandgap tuning and stability improvements enabled by halide and cation mixing. However, such compositional variations can be accompanied by significant changes in their charge-carrier transport and recombination regimes that are still not fully understood. Here, a novel combinatorial technique is presented to disentangle such dynamic processes over a wide range of temperatures, based on transient free-space, high-frequency microwave conductivity and photoluminescence measurements conducted simultaneously in situ. Such measurements are used to reveal and contrast the dominant charge-carrier recombination pathways for a range of key compositions: prototypical methylammonium lead iodide perovskite (MAPbI3), the stable mixed formamidinium-caesium lead-halide perovskite FA0.83Cs0.17PbBr0.6I2.4 targeted for photovoltaic tandems with silicon, and fully inorganic wide-bandgap CsPbBr3 aimed toward light sources and X-ray detector applications. The changes in charge-carrier dynamics in FA0.83Cs0.17PbBr0.6I2.4 across temperatures are shown to be dominated by radiative processes, while those in MAPbI3 are governed by energetic disorder at low temperatures, low-bandgap minority-phase inclusions around the phase transition, and non-radiative processes at room temperature. In contrast, CsPbBr3 exhibits significant charge-carrier trapping at low and high temperatures, highlighting the need for improvement of material processing techniques for wide-bandgap perovskites.

Chalcohalide Antiperovskite Thin Films with Visible Light Absorption and High Charge-Carrier Mobility Processed by Solvent-Free and Low-Temperature Methods

Chemistry of Materials American Chemical Society (ACS) 35:16 (2023) 6482-6490

Authors:

Paz Sebastiá-Luna, Nathan Rodkey, Adeem Saeed Mirza, Sigurd Mertens, Snigdha Lal, Axel Melchor Gaona Carranza, Joaquín Calbo, Marcello Righetto, Michele Sessolo, Laura M Herz, Koen Vandewal, Enrique Ortí, Mónica Morales-Masis, Henk J Bolink, Francisco Palazon

Bandlike transport and charge-carrier dynamics in BiOI films

Journal of Physical Chemistry Letters American Chemical Society 14:29 (2023) 6620-6629

Authors:

Snigdha Lal, Marcello Righetto, Aleksander Ulatowski, Silvia Genaro Motti, Zhuotong Sun, Judith L MacManus-Driscoll, Robert LZ Hoye, Laura M Herz

Abstract:

Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping), which imposes a fundamental limit on long-range mobility. Here we report the terahertz (THz) photoconductivity dynamics in thin films of BiOI and demonstrate a lack of such self-trapping, with good charge-carrier mobility, reaching ∼3 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> at 295 K and increasing gradually to ∼13 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> at 5 K, indicative of prevailing bandlike transport. Using a combination of transient photoluminescence and THz- and microwave-conductivity spectroscopy, we further investigate charge-carrier recombination processes, revealing charge-specific trapping of electrons at defects in BiOI over nanoseconds and low bimolecular band-to-band recombination. Subject to the development of passivation protocols, BiOI thus emerges as a superior light-harvesting semiconductor among the family of bismuth-based semiconductors.

Atomistic understanding of the coherent interface between lead iodide perovskite and lead iodide

Advanced Materials Interfaces Wiley 10:28 (2023) 2300249

Authors:

Mathias Uller Rothmann, Kilian B Lohmann, Juliane Borchert, Michael B Johnston, Keith P McKenna, Laura M Herz, Peter D Nellist

Abstract:

Metal halide perovskite semiconductors have shown great performance in solar cells, and including an excess of lead iodide (PbI2) in the thin films, either as mesoscopic particles or embedded domains, often leads to improved solar cell performance. Atomic resolution scanning transmission electron microscope micrographs of formamidinium lead iodide (FAPbI3) perovskite films reveal the FAPbI3:PbI2 interface to be remarkably coherent. It is demonstrated that such interface coherence is achieved by the PbI2 deviating from its common 2H hexagonal phase to form a trigonal 3R polytype through minor shifts in the stacking of the weakly van-der-Waals-bonded layers containing the near-octahedral units. The exact crystallographic interfacial relationship and lattice misfit are revealed. It is further shown that this 3R polytype of PbI2 has similar X-ray diffraction (XRD) peaks to that of the perovskite, making XRD-based quantification of the presence of PbI2 unreliable. Density functional theory demonstrates that this interface does not introduce additional electronic states in the bandgap, making it electronically benign. These findings explain why a slight PbI2 excess during perovskite film growth can help template perovskite crystal growth and passivate interfacial defects, improving solar cell performance.