The impact of phase segregation in mixed halide perovskites: a matter of charge recombination rather than transport

Fundacio Scito (2021)

Authors:

Silvia Motti, Jay Patel, Robert Oliver, Henry Snaith, Michael Johnston, Laura Herz

Understanding the crystallographic and microstructural properties of hybrid perovskite thin films through electron microscopy

Fundacio Scito (2021)

Authors:

Mathias Uller Rothmann, Laura Herz, Juliane Borchert, Kilian Lohmann, Colum M. O'Leary, Judy Kim, Laura Clark, Henry Snaith, Michael Johnston, Peter Nellist, Alex Sheader

Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices

Advanced Materials Wiley 33:24 (2021) 2007057

Authors:

Leonardo RV Buizza, Laura M Herz

Abstract:

Metal-halide semiconductors have shown excellent performance in optoelectronic applications such as solar cells, light-emitting diodes, and detectors. In this review the role of charge–lattice interactions and polaron formation in a wide range of these promising materials, including perovskites, double perovskites, Ruddlesden–Popper layered perovskites, nanocrystals, vacancy-ordered, and other novel structures, is summarized. The formation of Fröhlich-type “large” polarons in archetypal bulk metal-halide ABX3 perovskites and its dependence on A-cation, B-metal, and X-halide composition, which is now relatively well understood, are discussed. It is found that, for nanostructured and novel metal-halide materials, a larger variation in the strengths of polaronic effects is reported across the literature, potentially deriving from variations in potential barriers and the presence of interfaces at which lattice relaxation may be enhanced. Such findings are further discussed in the context of different experimental approaches used to explore polaronic effects, cautioning that firm conclusions are often hampered by the presence of alternate processes and interactions giving rise to similar experimental signatures. Overall, a complete understanding of polaronic effects will prove essential given their direct influence on optoelectronic properties such as charge-carrier mobilities and emission spectra, which are critical to the performance of energy and optoelectronic applications.

Nanowires: A New Horizon for Polarization-resolved Terahertz Time-domain Spectroscopy

2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings (2021)

Authors:

K Peng, D Jevtics, F Zhang, S Sterzl, DA Damry, MU Rothmann, B Guilhabert, MJ Strain, H Tan, LM Herz, L Fu, MD Dawson, A Hurtado, C Jagadish, MB Johnston

Abstract:

In this study, a novel type of broadband polarization-sensitive photoconductive terahertz detectors based on crossed nanowire networks is demonstrated, enabling fast and precise polarization terahertz time-domain spectroscopy measurements.

Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations.

ACS energy letters 6:5 (2021) 2038-2047

Authors:

Taylor Moot, Jay B Patel, Gabriel McAndrews, Eli J Wolf, Daniel Morales, Isaac E Gould, Bryan A Rosales, Caleb C Boyd, Lance M Wheeler, Philip A Parilla, Steven W Johnston, Laura T Schelhas, Michael D McGehee, Joseph M Luther

Abstract:

Temperature coefficients for maximum power (T PCE), open circuit voltage (V OC), and short circuit current (J SC) are standard specifications included in data sheets for any commercially available photovoltaic module. To date, there has been little work on determining the T PCE for perovskite photovoltaics (PV). We fabricate perovskite solar cells with a T PCE of -0.08 rel %/°C and then disentangle the temperature-dependent effects of the perovskite absorber, contact layers, and interfaces by comparing different device architectures and using drift-diffusion modeling. A main factor contributing to the small T PCE of perovskites is their low intrinsic carrier concentrations with respect to Si and GaAs, which can be explained by its wider band gap. We demonstrate that the unique increase in E g with increasing temperatures seen for perovskites results in a reduction in J SC but positively influences V OC. The current limiting factors for the T PCE in perovskite PV are identified to originate from interfacial effects.