Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells
(2015)
Abstract:
Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I(-), and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.Transient Response of Organo-Metal-Halide Solar Cells Analyzed by Time-Resolved Current-Voltage Measurements
Photonics MDPI 2:4 (2015) 1101-1115
Determination of the exciton binding energy and effective masses for the methylammonium and formamidinium lead tri-halide perovskite family
(2015)
Nanowire apparatuses and methods
(2015) 61708432
Abstract:
Aspects of the present disclosure are directed to apparatuses and methods involving nanowires having junctions therebetween. As consistent with one or more embodiments, an apparatus includes first and second sets of nanowires, in which the second set overlaps the first set. The apparatus further includes a plurality of nanowire joining recrystallization junctions, each junction including material from a nanowire of the first set that is recrystallized into an overlapping nanowire of the second set.Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 Perovskite thin films
Advanced Functional Materials Wiley 25:39 (2015) 6218-6227