Homogenized Optoelectronic Properties in Perovskites: Achieving High-Efficiency Solar Cells with Common Chloride Additives
Journal of the American Chemical Society (2026)
Abstract:
Raw dataEnhanced stability and linearly polarized emission from CsPbI3 perovskite nanoplatelets through A-site cation engineering
Light: Science & Applications 15:1 (2026) 22
Abstract:
The anisotropy of perovskite nanoplatelets (PeNPLs) opens up many opportunities in optoelectronics, including enabling the emission of linearly polarized light. But the limited stability of PeNPLs is a pressing challenge, especially for red-emitting CsPbI3. Herein, we address this limitation by alloying formamidinium (FA) into the perovskite cuboctahedral site. Unlike Cs/FA alloying in bulk thin films or nanocubes, FA incorporation in nanoplatelets requires meticulous control over the reaction conditions, given that nanoplatelets are obtained in kinetically-driven growth regimes instead of thermodynamically-driven conditions. Through in-situ photoluminescence (PL) measurements, we find that excess FA leads to uncontrolled growth, where phase impurities and nanoplatelets of multiple thicknesses co-exist. Restricting the FA content to up to 25% Cs substitution enables monodisperse PeNPLs, and increases the PL quantum yield (from 53% to 61%), exciton lifetime (from 18 ns to 27 ns), and stability in ambient air (from ~2 days to >7 days) compared to CsPbI3. This arises due to hydrogen bonding between FA and the oleate and oleylammonium ligands, anchoring them to the surface to improve optoelectronic properties and stability. The reduction in non-radiative recombination, improvement in the nanoplatelet aspect ratio, and higher ligand density lead to FA-containing PeNPLs more effectively forming edge-up superlattices, enhancing the PL degree of linear polarization from 5.1% (CsPbI3) to 9.4% (Cs0.75FA0.25PbI3). These fundamental insights show how the stability limitations of PeNPLs could be addressed, and these materials grown more precisely to improve their performance as polarized light emitters, critical for utilizing them in next-generation display, bioimaging, and communications applications.Stabilized perovskite ink for scalable coating enables high-efficiency perovskite modules
Science Advances American Association for the Advancement of Science (AAAS) 12:1 (2026) eaec0915
Abstract:
Perovskite inks play critical roles in determining film quality and device performance, and ink stability is desired to ensure high device reproducibility. Here, we reveal the instability issue of current cesium-formamidinium lead triiodide (CsxFA1-xPbI3) inks whose aggregation and precipitation tendencies are induced by excessively strong solvent-lead-halide coordination. By modulating coordination strength between precursor salts and solvents, we identify solvent coordination-dispersion equilibrium as the governing factor for ink stability and develop a stable ink that exhibits a remarkable increase in the shelf life. It effectively tunes ink drying and film crystallization, resulting in blade-coated perovskite films with excellent uniformity and low defect density. This enhancement led to increased aperture efficiency of ambient-fabricated p-i-n perovskite modules to 23.5%. The resultant devices also exhibit high durability, and 99% of the initial PCE was retained after 1700 hours of maximum power point tracking following the ISOS-L-2 standard protocol.Closed-loop manufacturing for sustainable perovskite photovoltaics
Nature Reviews Materials Springer Nature (2025) 1-16
Abstract:
Perovskite solar cells (PSCs) are emerging as a particularly promising technology to enhance the world’s renewable energy generation capacity. As PSCs are transitioning from research to industrial-scale production, there is an important opportunity to establish sustainable manufacturing pathways. Here, we present a closed-loop framework for the development of environmentally sustainable PSCs and highlight strategies to achieve this vision. First, we analyse the sourcing of raw materials and compare two established PSC fabrication techniques, vapour-phase deposition and solution processing, evaluating their respective advantages and limitations in terms of economic feasibility and environmental impact. Second, we examine solution processing methods, focusing on solvent system design for the preparation of high-quality perovskite films and on the use of non-hazardous or less-hazardous solvents. Third, we examine potential lead-release concerns during PSC operation and discuss approaches to minimize associated environmental risks. Fourth, we summarize effective recycling methods for main PSC components to support a circular production model. Finally, we identify key challenges and outline future research directions to achieve fully sustainable, closed-loop PSC technologies.Fullerene derivative integration controls morphological behaviour and recombination losses in non-fullerene acceptor-based organic solar cells
Materials Horizons Royal Society of Chemistry (2025)