The impact of the halide cage on the electronic properties of fully inorganic caesium lead halide perovskites

(2017)

Authors:

Z Yang, A Surrente, K Galkowski, A Miyata, O Portugall, RJ Sutton, AA Haghighirad, HJ Snaith, DK Maude, P Plochocka, RJ Nicholas

Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites

ACS Energy Letters American Chemical Society 2:7 (2017) 1621-1627

Authors:

Z Yang, A Surrente, K Galkowski, A Miyata, O Portugall, Rebecca Sutton, AA Haghighirad, HJ Snaith, DK Maude, P Plochocka, RJ Nicholas

Abstract:

Perovskite solar cells with record power conversion efficiency are fabricated by alloying both hybrid and fully inorganic compounds. While the basic electronic properties of the hybrid perovskites are now well understood, key electronic parameters for solar cell performance, such as the exciton binding energy of fully inorganic perovskites, are still unknown. By performing magneto-transmission measurements, we determine with high accuracy the exciton binding energy and reduced mass of fully inorganic CsPbX3 perovskites (X = I, Br, and an alloy of these). The well-behaved (continuous) evolution of the band gap with temperature in the range of 4–270 K suggests that fully inorganic perovskites do not undergo structural phase transitions like their hybrid counterparts. The experimentally determined dielectric constants indicate that at low temperature, when the motion of the organic cation is frozen, the dielectric screening mechanism is essentially the same for both hybrid and inorganic perovskites and is dominated by the relative motion of atoms within the lead halide cage.

Band-tail recombination in hybrid lead iodide perovskite

Advanced Functional Materials Wiley (2017)

Authors:

AD Wright, Rebecca L Milot, GE Eperon, Henry J Snaith, Laura Johnston, Michael B Herz

Abstract:

Traps limit the photovoltaic efficiency and affect the charge transport of optoelectronic devices based on hybrid lead halide perovskites. Understanding the nature and energy scale of these trap states is therefore crucial for the development and optimization of solar cell and laser technology based on these materials. Here, the low-temperature photoluminescence of formamidinium lead triiodide (HC(NH2)2PbI3) is investigated. A power-law time dependence in the emission intensity and an additional low-energy emission peak that exhibits an anomalous relative Stokes shift are observed. Using a rate-equation model and a Monte Carlo simulation, it is revealed that both phenomena arise from an exponential trap-density tail with characteristic energy scale of ≈3 meV. Charge-carrier recombination from sites deep within the tail is found to cause emission with energy downshifted by up to several tens of meV. Hence, such phenomena may in part be responsible for open-circuit voltage losses commonly observed in these materials. In this high-quality hybrid perovskite, trap states thus predominantly comprise a continuum of energetic levels (associated with disorder) rather than discrete trap energy levels (associated, e.g., with elemental vacancies). Hybrid perovskites may therefore be viewed as classic semiconductors whose bandstructure picture is moderated by a modest degree of energetic disorder.

A triazoloquinoxaline and benzodithiophene bearing low band gap copolymer for electrochromic and organic photovoltaic applications

Synthetic Metals Elsevier 228 (2017) 111-119

Authors:

Serife O Hacioglu, Naime A Unlu, Ece Aktas, Gonul Hizalan, Esra D Yildiz, Ali Cirpan, Levent Toppare

Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution

Advanced Materials Wiley 29:29 (2017) 1-8

Authors:

David McMeekin, Zhiping Wang, Waqaas Rehman, F Pulvirenti, Jay B Patel, Nakita K Noel, Michael B Johnston, Marder, Laura Herz, Henry J Snaith

Abstract:

The meteoric rise of the field of perovskite solar cells has been fueled by the ease with which a wide range of high-quality materials can be fabricated via simple solution processing methods. However, to date, little effort has been devoted to understanding the precursor solutions, and the role of additives such as hydrohalic acids upon film crystallization and final optoelectronic quality. Here, a direct link between the colloids concentration present in the [HC(NH2 )2 ]0.83 Cs0.17 Pb(Br0.2 I0.8 )3 precursor solution and the nucleation and growth stages of the thin film formation is established. Using dynamic light scattering analysis, the dissolution of colloids over a time span triggered by the addition of hydrohalic acids is monitored. These colloids appear to provide nucleation sites for the perovskite crystallization, which critically impacts morphology, crystal quality, and optoelectronic properties. Via 2D X-ray diffraction, highly ordered and textured crystals for films prepared from solutions with lower colloidal concentrations are observed. This increase in material quality allows for a reduction in microstrain along with a twofold increase in charge-carrier mobilities leading to values exceeding 20 cm(2) V(-1) s(-1) . Using a solution with an optimized colloidal concentration, devices that reach current-voltage measured power conversion efficiency of 18.8% and stabilized efficiency of 17.9% are fabricated.