The Geology of Pluto and Charon Through the Eyes of New Horizons

(2016)

Authors:

Jeffrey M Moore, William B McKinnon, John R Spencer, Alan D Howard, Paul M Schenk, Ross A Beyer, Francis Nimmo, Kelsi N Singer, Orkan M Umurhan, Oliver L White, S Alan Stern, Kimberly Ennico, Cathy B Olkin, Harold A Weaver, Leslie A Young, Richard P Binzel, Marc W Buie, Bonnie J Buratti, Andrew F Cheng, Dale P Cruikshank, Will M Grundy, Ivan R Linscott, Harold J Reitsema, Dennis C Reuter, Mark R Showalter, Veronica J Bray, Carrie L Chavez, Carly JA Howett, Tod R Lauer, Carey M Lisse, Alex Harrison Parker, SB Porter, Simon J Robbins, Kirby Runyon, Ted Stryk, Henry B Throop, Constantine CC Tsang, Anne J Verbiscer, Amanda M Zangari, Andrew L Chaikin, Don E Wilhelms

Surface Compositions Across Pluto and Charon

(2016)

Authors:

WM Grundy, RP Binzel, BJ Buratti, JC Cook, DP Cruikshank, CM Dalle Ore, AM Earle, K Ennico, CJA Howett, AW Lunsford, CB Olkin, AH Parker, S Philippe, S Protopapa, E Quirico, DC Reuter, B Schmitt, KN Singer, AJ Verbiscer, RA Beyer, MW Buie, AF Cheng, DE Jennings, IR Linscott, J Wm Parker, PM Schenk, JR Spencer, JA Stansberry, SA Stern, HB Throop, CCC Tsang, HA Weaver, GE Weigle, LA Young, the New Horizons Science Team

The Small Satellites of Pluto as Observed by New Horizons

(2016)

Authors:

HA Weaver, MW Buie, BJ Buratti, WM Grundy, TR Lauer, CB Olkin, AH Parker, SB Porter, MR Showalter, JR Spencer, SA Stern, AJ Verbiscer, WB McKinnon, JM Moore, SJ Robbins, P Schenk, KN Singer, OS Barnouin, AF Cheng, CM Ernst, CM Lisse, DE Jennings, AW Lunsford, DC Reuter, DP Hamilton, DE Kaufmann, K Ennico, LA Young, RA Beyer, RP Binzel, VJ Bray, AL Chaikin, JC Cook, DP Cruikshank, CM Dalle Ore, AM Earle, GR Gladstone, CJA Howett, IR Linscott, F Nimmo, J Wm Parker, S Philippe, S Protopapa, HJ Reitsema, B Schmitt, T Stryk, ME Summers, CCC Tsang, HHB Throop, OL White, AM Zangari

Detection of H3+ auroral emission in Jupiter's 5-micron window

Astronomy and Astrophysics EDP Sciences (2016)

Authors:

Rohini Giles, Ln Fletcher, Pgj Irwin, Et al.

Abstract:

We use high-resolution ground-based observations from the VLT CRIRES instrument in November 2012 to identify sixteen previously undetected H3+ emission lines from Jupiter’s ionosphere. These emission lines are located in Jupiter’s 5-micron window (4.5−5.2 μm), an optically-thin region of the planet’s spectrum where the radiation mostly originates from the deep troposphere. The H3+ emission lines are so strong that they are visible even against this bright background. We measure the Doppler broadening of the H3+ emission lines in order to evaluate the kinetic temperature of the molecules, and we obtain a value of 1390 ± 160 K. We also measure the relative intensities of lines in the ν2 fundamental in order to calculate the rotational temperature, obtaining a value of 960 ± 40 K. Finally, we use the detection of an emission line from the 2ν2(2)-ν2 overtone to measure a vibrational temperature of 925 ± 25 K. We use these three independent temperature estimates to discuss the thermodynamic equilibrium of Jupiter’s ionosphere.

Isotopic ratios of carbon and oxygen in Titan's co using ALMA

Astrophysical Journal Letters IOP Publishing 821:1 (2016) L8-L8

Authors:

J Serigano, CA Nixon, MA Cordiner, Patrick Irwin, NA Teanby, SB Charnley, JE Lindberg

Abstract:

We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan's atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), 13CO (J = 2-1, 3-2, 6-5), C18O (J = 2-1, 3-2), and C17O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundance of CO was determined to be 49.6 ± 1.8 ppm, assumed to be constant with altitude, with isotopic ratios 12C/13C = 89.9 ± 3.4, 16O/18O = 486 ± 22, and 16O/17O = 2917 ± 359. The measurements of 12C/13C and 16O/18O ratios are the most precise values obtained in Titan's atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.