Composite infrared spectrometer (CIRS) on Cassini: publisher's note.

Applied Optics Optica Publishing Group 56:21 (2017) 5897

Authors:

DE Jennings, FM Flasar, VG Kunde, CA Nixon, ME Segura, PN Romani, N Gorius, S Albright, JC Brasunas, RC Carlson, AA Mamoutkine, E Guandique, MS Kaelberer, S Aslam, RK Achterberg, GL Bjoraker, CM Anderson, V Cottini, JC Pearl, MD Smith, BE Hesman, RD Barney, S Calcutt, TJ Vellacott, LJ Spilker, SG Edgington, SM Brooks, P Ade, PJ Schinder, A Coustenis, R Courtin, G Michel, R Fettig, S Pilorz, C Ferrari

Mountain glaciers as paleoclimate proxies

Annual Review of Earth and Planetary Sciences Annual Reviews 49 (2017) 649-680

Authors:

Andrew N Mackintosh, Brian M Anderson, Raymond Pierrehumbert

Abstract:

Glaciers offer the potential to reconstruct past climate over timescales from decades to millennia. They are found on nearly every continent, and at the Last Glacial Maximum, glaciers were larger in all regions on Earth. The physics of glacier-climate interaction is relatively well understood, and glacier models can be used to reconstruct past climate from geological evidence of past glacier extent. This can lead to significant insights regarding past, present and future climate. For example, glacier modelling has demonstrated that the near ubiquitous global pattern of glacier retreat during the last few centuries resulted from a global-scale climate warming of ~1°C, consistent with instrumental data and climate proxy records. Climate reconstructions from glaciers also demonstrated that the tropics were colder at the Last Glacial Maximum than was originally inferred from sea surface temperature reconstructions. Future efforts to reconstruct climate from glaciers may provide new constraints on climate sensitivity to CO2 forcing, polar amplification of climate change, and more.

Composite infrared spectrometer (CIRS) on Cassini

Applied Optics 56:18 (2017) 5274-5294

Authors:

DE Jennings, FM Flasar, VG Kunde, CA Nixon, ME Segura, PN Romani, N Gorius, S Albright, JC Brasunas, RC Carlson, AA Mamoutkine, E Guandique, MS Kaelberer, S Aslam, RK Achterberg, GL Bjoraker, CM Anderson, V Cottini, JC Pearl, MD Smith, BE Hesman, RD Barney, S Calcutt, TJ Vellacott, LJ Spilker, SG Edgington, SM Brooks, P Ade, PJ Schinder, A Coustenis, R Courtin, G Michel, R Fettig, S Pilorz, C Ferrari

Abstract:

© 2017 Optical Society of America. The Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassini's 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2. The instrument, consisting of two interferometers sharing a telescope and a scan mechanism, covers over a factor of 100 in wavelength in the mid and far infrared. It is used to study temperature, composition, structure, and dynamics of the atmospheres of Jupiter, Saturn, and Titan, the rings of Saturn, and surfaces of the icy moons. CIRS has returned a large volume of scientific results, the culmination of over 30 years of instrument development, operation, data calibration, and analysis. As Cassini and CIRS reach the end of their mission in 2017, we expect that archived spectra will be used by scientists for many years to come.

Independent evolution of stratospheric temperatures in Jupiter's northern and southern auroral regions from 2014 to 2016

Geophysical Research Letters American Geophysical Union 44:11 (2017) 5345-5354

Authors:

JA Sinclair, GS Orton, TK Greathouse, LN Fletcher, C Tao, GR Gladstone, A Adriani, W Dunn, JI Moses, V Hue, Patrick Irwin, H Melin, RS Giles

Abstract:

We present retrievals of the vertical temperature profile of Jupiter's high latitudes from Infrared Telescope Facility-Texas Echelon Cross Echelle Spectrograph measurements acquired on 10–11 December 2014 and 30 April to 1 May 2016. Over this time range, 1 mbar temperature in Jupiter's northern and southern auroral regions exhibited independent evolution. The northern auroral hot spot exhibited negligible net change in temperature at 1 mbar and its longitudinal position remained fixed at 180°W (System III), whereas the southern auroral hot spot exhibited a net increase in temperature of 11.1 ± 5.2 K at 0.98 mbar and its longitudinal orientation moved west by approximately 30°. This southern auroral stratospheric temperature increase might be related to (1) near-contemporaneous brightening of the southern auroral ultraviolet/near-infrared H + 3 emission measured by the Juno spacecraft and (2) an increase in the solar dynamical pressure in the preceding 3 days. We therefore suggest that 1 mbar temperature in the southern auroral region might be modified by higher-energy charged particle precipitation.

The PanCam instrument for the ExoMars rover

Astrobiology Mary Ann Liebert 17:6-7 (2017) 511-541

Authors:

AJ Coates, R Jaumann, AD Griffiths, CE Leff, N Schmitz, J-L Josset, G Paar, M Gunn, E Hauber, CR Cousins, RE Cross, P Grindrod, JC Bridges, M Balme, S Gupta, IA Crawford, Patrick Irwin, R Stabbins, D Tirsch, JL Vago, T Theodorou, M Caballo-Perucha, GR Osinski

Abstract:

The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars-ExoMars-Instrumentation-Geology-Atmosphere-Exobiology-Context. Astrobiology 17, 511-541.