Abundances of Jupiter's trace hydrocarbons from Voyager and Cassini

Planetary and Space Science Elsevier 58:13 (2010) 1667-1680

Authors:

Conor A Nixon, Richard K Achterberg, Paul N Romani, Mark Allen, Xu Zhang, Nick A Teanby, Patrick GJ Irwin, F Michael Flasar

Abstract:

The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes. We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on the other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.

Abundances of Jupiter's Trace Hydrocarbons From Voyager and Cassini

(2010)

Authors:

Conor A Nixon, Richard K Achterberg, Paul N Romani, Mark Allen, Xi Zhang, Nicholas A Teanby, Patrick GJ Irwin, F Michael Flasar

A tropical haze band in Titan's stratosphere

Icarus 207:1 (2010) 485-490

Authors:

R de Kok, PGJ Irwin, NA Teanby, S Vinatier, F Tosi, A Negrão, S Osprey, A Adriani, ML Moriconi, A Coradini

Abstract:

Inspection of near-infrared images from Cassini's Imaging Science Subsystem and Visual and Infrared Mapping Spectrometer have revealed a new feature in Titan's haze structure: a narrow band of increased scattering by haze south of the equator. The band seems to indicate a region of very limited mixing in the lower stratosphere, which causes haze particles to be trapped there. This could explain the sharp separation between the two hemispheres, known as the north-south asymmetry, seen in images. The separation of the two hemispheres can also be seen in the stratosphere above 150 km using infrared spectra measured by Cassini's Composite Infrared Spectrometer. Titan's behaviour in the lower tropical stratosphere is remarkably similar to that of the Earth's tropical stratosphere, which hints at possible common dynamical processes. © 2009 Elsevier Inc. All rights reserved.

Compositional evidence for Titan's stratospheric tilt

Planetary and Space Science 58:5 (2010) 792-800

Authors:

NA Teanby, PGJ Irwin, R de Kok

Abstract:

Five years of Cassini CIRS infrared spectra have been used to determine the tilt of Titan's stratospheric symmetry axis with respect to the solid body rotation axis. Measurements of HCN abundance centred around 5 mbar (125 km altitude) at equatorial latitudes show the symmetry axis is tilted by 4.0 ± 1 . 5{ring operator} in a direction 70 ± 40{ring operator} W of the sub-solar point. This value is consistent with tilts determined from temperature and haze measurements by Achterberg et al. (2008a) and Roman et al. (2009). The consistency of results from three independent methods suggests that Titan's entire stratosphere is tilted and provides a powerful constraint on the underlying atmospheric dynamics. © 2010 Elsevier Ltd. All rights reserved.

The future of planetary geophysics

Astronomy & Geophysics Oxford University Press (OUP) 51:2 (2010) 2.22-2.25

Authors:

Nick Teanby, Neil Bowles