Thermal structure and composition of Jupiter's Great Red Spot from high-resolution thermal imaging

Icarus 208:1 (2010) 306-328

Authors:

LN Fletcher, GS Orton, O Mousis, P Yanamandra-Fisher, PD Parrish, PGJ Irwin, BM Fisher, L Vanzi, T Fujiyoshi, T Fuse, AA Simon-Miller, E Edkins, TL Hayward, J De Buizer

Abstract:

Thermal-IR imaging from space-borne and ground-based observatories was used to investigate the temperature, composition and aerosol structure of Jupiter's Great Red Spot (GRS) and its temporal variability between 1995 and 2008. An elliptical warm core, extending over 8° of longitude and 3° of latitude, was observed within the cold anticyclonic vortex at 21°S. The warm airmass is co-located with the deepest red coloration of the GRS interior. The maximum contrast between the core and the coldest regions of the GRS was 3.0-3.5. K in the north-south direction at 400. mbar atmospheric pressure, although the warmer temperatures are present throughout the 150-500. mbar range. The resulting thermal gradients cause counter-rotating flow in the GRS center to decay with altitude into the lower stratosphere. The elliptical warm airmass was too small to be observed in IRTF imaging prior to 2006, but was present throughout the 2006-2008 period in VLT, Subaru and Gemini imaging.Spatially-resolved maps of mid-IR tropospheric aerosol opacity revealed a well-defined lane of depleted aerosols around the GRS periphery, and a correlation with visibly-dark jovian clouds and bright 4.8-μm emission. Ammonia showed a similar but broader ring of depletion encircling the GRS. This narrow lane of subsidence keeps red aerosols physically separate from white aerosols external to the GRS. The visibility of the 4.8-μm bright periphery varies with the mid-IR aerosol opacity of the upper troposphere. Compositional maps of ammonia, phosphine and para-H2 within the GRS interior all exhibit north-south asymmetries, with evidence for higher concentrations north of the warm central core and the strongest depletions in a symmetric arc near the southern periphery. Small-scale enhancements in temperature, NH3 and aerosol opacity associated with localized convection are observed within the generally-warm and aerosol-free South Equatorial Belt (SEB) northwest of the GRS. The extent of 4.8-μm emission from the SEB varied as a part of the 2007 'global upheaval,' though changes during this period were restricted to pressures greater than 500mbar. Finally, a region of enhanced temperatures extended southwest of the GRS during the survey, restricted to the 100-400mbar range and with no counterpart in visible imaging or compositional mapping. The warm airmass was perturbed by frequent encounters with the cold airmass of Oval BA, but no internal thermal or compositional effects were noted in either vortex during the close encounters. © 2010 Elsevier Inc.

Abundances of Jupiter's trace hydrocarbons from Voyager and Cassini

Planetary and Space Science Elsevier 58:13 (2010) 1667-1680

Authors:

Conor A Nixon, Richard K Achterberg, Paul N Romani, Mark Allen, Xu Zhang, Nick A Teanby, Patrick GJ Irwin, F Michael Flasar

Abstract:

The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes. We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on the other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.

Abundances of Jupiter's Trace Hydrocarbons From Voyager and Cassini

(2010)

Authors:

Conor A Nixon, Richard K Achterberg, Paul N Romani, Mark Allen, Xi Zhang, Nicholas A Teanby, Patrick GJ Irwin, F Michael Flasar

A tropical haze band in Titan's stratosphere

Icarus 207:1 (2010) 485-490

Authors:

R de Kok, PGJ Irwin, NA Teanby, S Vinatier, F Tosi, A Negrão, S Osprey, A Adriani, ML Moriconi, A Coradini

Abstract:

Inspection of near-infrared images from Cassini's Imaging Science Subsystem and Visual and Infrared Mapping Spectrometer have revealed a new feature in Titan's haze structure: a narrow band of increased scattering by haze south of the equator. The band seems to indicate a region of very limited mixing in the lower stratosphere, which causes haze particles to be trapped there. This could explain the sharp separation between the two hemispheres, known as the north-south asymmetry, seen in images. The separation of the two hemispheres can also be seen in the stratosphere above 150 km using infrared spectra measured by Cassini's Composite Infrared Spectrometer. Titan's behaviour in the lower tropical stratosphere is remarkably similar to that of the Earth's tropical stratosphere, which hints at possible common dynamical processes. © 2009 Elsevier Inc. All rights reserved.

Compositional evidence for Titan's stratospheric tilt

Planetary and Space Science 58:5 (2010) 792-800

Authors:

NA Teanby, PGJ Irwin, R de Kok

Abstract:

Five years of Cassini CIRS infrared spectra have been used to determine the tilt of Titan's stratospheric symmetry axis with respect to the solid body rotation axis. Measurements of HCN abundance centred around 5 mbar (125 km altitude) at equatorial latitudes show the symmetry axis is tilted by 4.0 ± 1 . 5{ring operator} in a direction 70 ± 40{ring operator} W of the sub-solar point. This value is consistent with tilts determined from temperature and haze measurements by Achterberg et al. (2008a) and Roman et al. (2009). The consistency of results from three independent methods suggests that Titan's entire stratosphere is tilted and provides a powerful constraint on the underlying atmospheric dynamics. © 2010 Elsevier Ltd. All rights reserved.