The Ariel payload design post-PDR

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 13092 (2024) 130921b-130921b-21

Authors:

Paul Eccleston, Andrew Caldwell, Georgia Bishop, Lucile Desjonqueres, Rachel Drummond, Alex Davidson, Martin Whalley, Martin Caldwell, Chris Pearson, Caroline Simpson, Sandy Fok, Davide Bruzzi, Alex Davies, Mark Anderson, Pranav Umesh, Enzo Pascale, Gianluca Morgante, Mauro Focardi, Giorgio Savini, Marc Ollivier, Miroslaw Rataj, Giuseppe Malaguti, Giovanna Tinetti, Andrea Tozzi, Paolo Chioetto, Emanuele Pace, Paola Zuppella, Giampaolo Preti, Christophe Serre, Jose M Gomez, Gustavo Alonso, Javier Perez, Neil Bowles, Keith Nowicki, Jérôme Martignac, Michel Berthé, Pascale Danto, Martin Crook, Matthew Hills, Charles Padley, Semu Makinen, Zsolt Kovacs, Janos Szoke, Peter Szirovicza, Mateusz Sobiecki, Konrad Skup, Piotr Wawer, Roland Ottensamer, Warren Holmes, Renaud Goullioud, Markus Czupalla, Niels Christian Jessen, Soren Pedersen, Tom Ray, Deirdre Coffey, Lukas Steiger, Carlos Compostizo, Ricardo Machado, Andrea Bocchieri, Lorenzo Mugnai, Stephan Birkmann, Salma Fahmy, Ludovic Puig, Delphine Jollet, Anders Svedevall, Thierry Tirolien, Jean-Christophe Salvignol, Jean-Philippe Halain

Dust and Clouds on Mars: The View from Mars Express

Space Science Reviews Springer 220:6 (2024) 63

Authors:

A Määttänen, A Fedorova, M Giuranna, J Hernández-Bernal, Y Leseigneur, F Montmessin, KS Olsen, A Sánchez-Lavega, A Stcherbinine, A Szantai, D Tirsch, M Vincendon, Y Willame, P Wolkenberg

Abstract:

European Space Agency’s Mars Express (MEX) has been orbiting Mars for 20 years and its instruments have provided a plethora of observations of atmospheric dust and clouds. These observations have been analysed to produce many unique views of the processes leading to dust lifting and cloud formation, and a full picture of the climatologies of dust and clouds has emerged. Moreover, the orbit of MEX enables viewing the planet at many local times, giving a unique access to the diurnal variations of the atmosphere. This article provides an overview of the observations of dust and clouds on Mars by MEX, complemented by the Trace Gas Orbiter that has been accompanying MEX on orbit for some years.

Characterization of sites of scientific interest for ESA's PROSPECT instrument

Icarus Elsevier 421 (2024) 116240

Authors:

Sj Boazman, D Heather, M Hutton, M Schwinning, A Frigeri, N Schmitz, S Besse, M Formisano, C De Sanctis, C Gscheidle, C Orgel, P Reiss, E Sefton-Nash, T Warren

Abstract:

Many upcoming lunar missions and payloads are targeting the south pole of the Moon, due to the volatiles potentially harboured in this region including ESA's PROSPECT instrument. PROSPECT is designed to sample the lunar regolith within the first meter of the surface and to analyse any volatiles found. Remote sensing methods and a range of datasets including thermal models, illumination models, LRO NAC images, LOLA DEMs and LRO NAC DEMs generated with shape-from-shading, were used to identify suitable areas for PROSPECT science within the south polar region (84–90°S). Sites identified were down selected using a science matrix and scoring sites of interest based on if and how well the point of interest met the science requirements of PROSPECT. The highest scoring sites are presented and proposed to be ideal candidate landing sites for missions targeting the lunar south polar region, especially for missions that are interested in sampling volatiles, micro cold traps and Permanently Shaded Regions (PSRs). Understanding and sampling these colder areas within the south polar region will advance the understanding of volatiles within the lunar surface and volatile transfer.

Spatial Variations of Jovian Tropospheric Ammonia via Ground‐Based Imaging

Earth and Space Science American Geophysical Union (AGU) 11:8 (2024)

Authors:

SM Hill, PGJ Irwin, C Alexander, JH Rogers

Abstract:

AbstractCurrent understanding of the ammonia distribution in Jupiter's atmosphere is provided by observations from major ground‐based facilities and spacecraft, and analyzed with sophisticated retrieval models that recover high fidelity information, but are limited in spatial and temporal coverage. Here we show that the ammonia abundance in Jupiter's upper troposphere, which tracks the overturning atmospheric circulation, can be simply, but reliably determined from continuum‐divided ammonia and methane absorption‐band images made with a moderate‐sized Schmidt‐Cassegrain telescope (SCT). In 2020–2021, Jupiter was imaged in the 647‐nm ammonia absorption band and adjacent continuum bands with a 0.28‐m SCT, demonstrating that the spatially resolved ammonia optical depth could be determined with such a telescope. In 2022–2023, a 619 nm methane‐band filter was added to provide a constant reference against which to correct the ammonia abundances (column‐averaged mole fraction) for cloud opacity variations. These 0.28‐m SCT results are compared with observations from: (a) the MUSE instrument on ESO's Very Large Telescope (b) the TEXES mid‐infrared spectrometer used on NASA's InfraRed Telescope Facility; and (c) the Gemini telescopes, and are shown to provide reliable maps of ammonia abundance. Meridional and longitudinal features are examined, including the Equatorial Zone (EZ) ammonia enhancement, the North Equatorial Belt depletion, depletion above the Great Red Spot, and longitudinal enhancements in the northern EZ. This work demonstrates meaningful ammonia monitoring can be achieved with small telescopes that can complement spacecraft and major ground‐based facility observations.

Upper limits of HO2 in the atmosphere of Mars from the ExoMars Trace Gas Orbiter

Monthly Notices of the Royal Astronomical Society Oxford University Press 532:4 (2024) 4429-4435

Authors:

Juan Alday, Alexander Trokhimovskiy, Denis A Belyaev, Anna A Fedorova, James A Holmes, Manish R Patel, Jonathon P Mason, Franck Lefèvre, Kevin S Olsen, Franck Montmessin, Oleg Korablev, Lucio Baggio, Andrey Patrakeev

Abstract:

Odd-hydrogen (HOx⁠) species have a crucial role in regulating the chemistry of the atmosphere of Mars and are important to understand some of the most fundamental aspects regarding its atmospheric composition such as the long-term stability of CO2⁠⁠. Despite the key role of these species for our understanding of the Martian photochemistry, there is little observational evidence constraining their abundances. In this study, we use infrared solar occultation observations from the Atmospheric Chemistry Suite aboard the ExoMars Trace Gas Orbiter to search for spectral signatures of HO2⁠ in the atmosphere of Mars. In our analysis of the data, we retrieve vertical profiles of pressure, temperature, and water vapour mixing ratio, but are unable to confidently detect the presence of HO2⁠ features in the spectra. We report upper limits of 15 ppbv (5σ⁠), which represents an order of magnitude improvement with respect to previous investigations. Comparing the derived upper limits with the expectations from 3-dimensional Global Climate Models, we find that approximately an order of magnitude improvement in the instrument sensitivity would be required to detect this molecule and/or constrain the models.