Dynamics and clouds in planetary atmospheres from telescopic observations

Astronomy and Astrophysics Review Springer 31:1 (2023) 5

Authors:

Agustin Sanchez-Lavega, Patrick Irwin, Antonio Garcia Munoz

Abstract:

This review presents an insight into our current knowledge of the atmospheres of the planets Venus, Mars, Jupiter, Saturn, Uranus and Neptune, the satellite Titan, and those of exoplanets. It deals with the thermal structure, aerosol properties (hazes and clouds, dust in the case of Mars), chemical composition, global winds, and selected dynamical phenomena in these objects. Our understanding of atmospheres is greatly benefitting from the discovery in the last 3 decades of thousands of exoplanets. The exoplanet properties span a broad range of conditions, and it is fair to expect as much variety for their atmospheres. This complexity is driving unprecedented investigations of the atmospheres, where those of the solar systems bodies are the obvious reference. We are witnessing a significant transfer of knowledge in both directions between the investigations dedicated to Solar System and exoplanet atmospheres, and there are reasons to think that this exchange will intensity in the future. We identify and select a list of research subjects that can be conducted at optical and infrared wavelengths with future and currently available ground-based and space-based telescopes, but excluding those from the space missions to solar system bodies.

Ultraviolet and visible reflectance spectra of Phobos and Deimos as measured by the ExoMars-TGO/Nomad-UVIS spectrometer

Journal of Geophysical Research: Planets Wiley 128:12 (2023) e2023JE008002

Authors:

Jp Mason, Mr Patel, M Pajola, Ed Cloutis, J Alday, Ks Olsen, C Marriner, Ja Holmes, G Sellers, N Thomas, M Almeida, M Read, H Nakagawa, Ir Thomas, B Ristic, Y Willame, C Depiesse, F Daerden, Ac Vandaele, Jj Lopez-Moreno, G Bellucci

Abstract:

Spectroscopic measurements are a powerful tool to investigate the surface composition of airless bodies and provide clues of their origin. The composition and origin of Phobos and Deimos are still unknown and are currently widely debated. We present spectroscopic measurements of Phobos and Deimos at ultraviolet and visible wavelengths (250–650 nm) made by the NOMAD-Ultraviolet and Visible Spectrometer (UVIS) on the ExoMars TGO mission. These new spectra cover multiple areas on Phobos and Deimos, and are of generally higher spectral resolution and signal-to-noise than previous spectra, and extend to lower wavelengths than most previous measurements. The UVIS spectra confirm a red-sloped spectrum lacking any strong absorption features; however, we confirm the presence of a previously identified absorption feature near 0.65 μm and tentative absorption near 0.45 μm. The observed Phobos and Deimos spectra are similar to D- and T-type asteroids, adding weight to the captured asteroid hypothesis for the moons' origins. We also find, however, that the UVIS Phobos reflectance spectra of Phobos' red unit is a relatively close match to the olivine-rich, highly shocked Mars meteorite NWA 2737, with a low overall reflectance, a red-sloped spectrum, and lack of olivine-associated absorption bands in the UVIS spectral range. This meteorite, however, exhibits spectral features at longer wavelengths that not observed in the Martian moon spectra, indicating a need for further investigation at longer wavelengths to interpret whether this material could inform our understanding of Phobos' origin.

Correction to: Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations

Space Science Reviews Springer Nature 219:8 (2023) 72

Authors:

Thomas Widemann, Suzanne E Smrekar, James B Garvin, Anne Grete Straume-Lindner, Adriana C Ocampo, Mitchell D Schulte, Thomas Voirin, Scott Hensley, M Darby Dyar, Jennifer L Whitten, Daniel C Nunes, Stephanie A Getty, Giada N Arney, Natasha M Johnson, Erika Kohler, Tilman Spohn, Joseph G O’Rourke, Colin F Wilson, Michael J Way, Colby Ostberg, Frances Westall, Dennis Höning, Seth Jacobson, Arnaud Salvador, Guillaume Avice, Doris Breuer, Lynn Carter, Martha S Gilmore, Richard Ghail, Jörn Helbert, Paul Byrne, Alison R Santos, Robert R Herrick, Noam Izenberg, Emmanuel Marcq, Tobias Rolf, Matt Weller, Cedric Gillmann, Oleg Korablev, Lev Zelenyi, Ludmila Zasova, Dmitry Gorinov, Gaurav Seth, CV Narasimha Rao, Nilesh Desai

L’Ralph: A Visible/Infrared Spectral Imager for the Lucy Mission to the Trojans

Space Science Reviews Springer Nature 219:8 (2023) 69

Authors:

DC Reuter, AA Simon, A Lunsford, H Kaplan, M Garrison, J Simpson, G Casto, Z Dolch, P Finneran, W Grundy, C Howett, P Kim, M Loose, T Null, F Parong, J Rodriguez-ruiz, P Roming, K Smith, P Thompson, B Tokarcik, T Veach, S Wall, J Ward, E Weigle, H Levison

Latitudinal variations in methane abundance, aerosol opacity and aerosol scattering efficiency in Neptune's atmosphere determined from VLT/MUSE

Journal of Geophysical Research: Planets American Geophysical Union 128:11 (2023) e2023JE007980

Authors:

Patrick Irwin, Jack Dobinson, Arjuna James, Wong Michael, Fletcher Leigh, Roman Michael, Teanby Nicholas, Orton Glenn, Perez-Hoyos Santiago, Sanchez-Lavega Agustin, Simon Amy, Morales-Juberias Raul, de Pater Imke

Abstract:

Spectral observations of Neptune made in 2019 with the MUSE instrument at the Very Large Telescope in Chile have been analysed to determine the spatial variation of aerosol scattering properties and methane abundance in Neptune’s atmosphere. The darkening of the South Polar Wave (SPW) at ∼ 60◦S, and dark spots such as the Voyager 2 Great Dark Spot is concluded to be due to a spectrally-dependent darkening (λ < 650nm) of particles in a deep aerosol layer at ∼ 5 bar and presumed to be composed of a mixture of ~ 650 nm, with bright zones latitudinally separated by ∼ 25◦ . This feature, similar to the spectral characteristics of a discrete deep bright spot DBS-2019 found in our data, is found to be consistent with a brightening of the particles in the same ∼5-bar aerosol layer at λ > 650 nm. We find the properties of an overlying methane/haze aerosol layer at ∼ 2 bar are, to first-order, invariant with latitude, while variations in the opacity of an upper tropospheric haze layer reproduce the observed reflectivity at methane-absorbing wavelengths, with higher abundances found at the equator and also in a narrow ‘zone’ at 80◦S. Finally, we find the mean abundance of methane below its condensation level to be 6-7% at the equator reducing to ∼3% south of ∼25◦S, although the absolute abundances are model dependent.