Spectral determination of the colour and vertical structure of dark spots in Neptune’s atmosphere
Nature Astronomy Springer Nature 7 (2023) 1198-1207
Abstract:
Previous observations of dark vortices in Neptune’s atmosphere, such as Voyager 2’s Great Dark Spot (1989), have been made in only a few broad-wavelength channels, hampering efforts to determine these vortices’ pressure levels and darkening processes. We analyse spectroscopic observations of a dark spot on Neptune identified by the Hubble Space Telescope as NDS-2018; the spectral observations were made in 2019 by the Multi Unit Spectroscopic Explorer (MUSE) of the Very Large Telescope (Chile). The MUSE medium-resolution 475–933 nm reflection spectra allow us to show that dark spots are caused by darkening at short wavelengths (<700 nm) of a deep ~5 bar aerosol layer, which we suggest is the H2S condensation layer. A deep bright spot, named DBS-2019, is also visible on the edge of NDS-2018, with a spectral signature consistent with a brightening of the same 5 bar layer at longer wavelengths (>700 nm). This bright feature is much deeper than previously studied dark-spot companion clouds and may be connected with the circulation that generates and sustains such spots.Spectral determination of the colour and vertical structure of dark spots in Neptune's atmosphere
(2023)
False positives are common in single-station template matching
Seismica Seismica 2:2 (2023)
Abstract:
Template matching has become a cornerstone technique of observational seismology. By taking known events, and scanning them against a continuous record, new events smaller than the signal-to-noise ratio can be found, substantially improving the magnitude of completeness of earthquake catalogues. Template matching is normally used in an array setting, however as we move into the era of planetary seismology, we are likely to apply template matching for very small arrays or even single stations. Given the high impact of planetary seismology studies on our understanding of the structure and dynamics of non-Earth bodies, it is important to assess the reliability of template matching in the small-n setting. Towards this goal, we estimate a lower bound on the rate of false positives for single-station template matching by examining the behaviour of correlations of totally uncorrelated white noise. We find that, for typical processing regimes and match thresholds, false positives are likely quite common. We must therefore be exceptionally careful when considering the output of template matching in the small-n setting.Cassini composite infrared spectrometer: correcting an offset error and refining the pointing parameters for the midinfrared detectors: publisher's note.
Applied Optics Optica Publishing Group 62:23 (2023) 6298
Long-term variability of Jupiter's northern auroral 8-μm CH4 emissions
Icarus Elsevier 406 (2023) 115740