Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including dark spots
Journal of Geophysical Research: Planets Wiley 127:6 (2022) e2022JE007189
Abstract:
We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3–2.5 μm) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5–7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1–2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1–2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ∼0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1–2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately “snow out” (as predicted by Carlson et al. (1988), https://doi.org/10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of “dark spots”, such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.The impact of ultraviolet heating and cooling on the dynamics and observability of lava planet atmospheres
Monthly Notices of the Royal Astronomical Society Oxford University Press 513:4 (2022) 6125-6133
Abstract:
Lava planets have non-global, condensible atmospheres similar to icy bodies within the Solar system. Because they depend on interior dynamics, studying the atmospheres of lava planets can lead to understanding unique geological processes driven by their extreme environment. Models of lava planet atmospheres have thus far focused on either radiative transfer or hydrodynamics. In this study, we couple the two processes by introducing ultraviolet (UV) and infrared (IR) radiation to a turbulent boundary layer model. We also test the effect of different vertical temperature profiles on atmospheric dynamics. Results from the model show that UV radiation affects the atmosphere much more than IR. UV heating and cooling work together to produce a horizontally isothermal atmosphere away from the substellar point regardless of the vertical temperature profile. We also find that stronger temperature inversions induce stronger winds and hence cool the atmosphere. Our simulated transmission spectra of the bound atmosphere show a strong SiO feature in the UV that would be challenging to observe in the planet’s transit spectrum due to the precision required. Our simulated emission spectra are more promising, with significant SiO spectral features at 4.5 and 9 μm that can be observed with the James Webb Space Telescope. Different vertical temperature profiles produce discernible dayside emission spectra, but not in the way one would expect.Plant power: Burning biomass instead of coal can help fight climate change—but only if done right
Bulletin of the Atomic Scientists Taylor & Francis 78:3 (2022) 125-127
A Near-surface Temperature Model of Arrokoth
The Planetary Science Journal American Astronomical Society 3:5 (2022) 110
Sub-field of view surface thermal modeling of Cassini CIRS observations of Rhea during south polar winter
Icarus Elsevier 377 (2022) 114910