Fluid Mechanics: the quintessential complex system

Journal of Fluid Mechanics Cambridge University Press 938 (2022) F1

Abstract:

The 2021 Nobel Prize in Physics recognizes advances in the understanding of complex systems, and underscores that ‘complex’ does not mean ‘imponderable’.

Atmospheric dynamics of temperate sub-neptunes. I. Dry dynamics

The Astrophysical Journal IOP Publishing 927:1 (2022) 38

Authors:

Hamish Innes, Raymond Pierrehumbert

Abstract:

Sub-Neptunes (planets with radii between 2 and 4 R⊕) are abundant around M-dwarf stars, yet the atmospheric dynamics of these planets is relatively unexplored. In this paper, we aim to provide a basic underpinning of the dry dynamics of general low-mean-molecular-weight, temperate sub-Neptune atmospheres. We use the ExoFMS general circulation model (GCM) with an idealized gray-gas radiation scheme to simulate planetary atmospheres with different levels of instellation and rotation rates, using the atmosphere of K2-18b as our control. We find that the atmospheres of tidally locked (TL), temperate sub-Neptunes have weak horizontal temperature gradients owing to their slow rotation rates and hydrogen-dominated composition. The zonal wind structure is dominated by high-latitude cyclostrophic jets driven by the conservation of angular momentum. At low pressures we observe superrotating equatorial jets, which we propose are driven by a Rossby–Kelvin instability similar to the type seen in simulations of idealized atmospheres with axisymmetric forcing. By viewing the flow in TL coordinates, we find the predominant overturning circulation to be between the day side and night side, and we derive scaling relations linking the TL stream function and vertical velocities to instellation. Comparing our results to the only other GCM study of K2-18b, we find significant qualitative differences in dynamics, highlighting the need for further collaboration and investigation into the effects of different dynamical cores and physical parameterizations. This paper provides a baseline for studying the dry dynamics of temperate sub-Neptunes, which will be built on in part II with the introduction of moist effects.

New Constraints on Titan’s Stratospheric n-Butane Abundance

The Planetary Science Journal American Astronomical Society 3:3 (2022) 59-59

Authors:

Brendan L Steffens, Conor A Nixon, Keeyoon Sung, Patrick GJ Irwin, Nicholas A Lombardo, Eric Pereira

Abstract:

Abstract Curiously, n-butane has yet to be detected at Titan, though it is predicted to be present in a wide range of abundances that span over 2.5 orders of magnitude. We have searched infrared spectroscopic observations of Titan for signals from n-butane (n-C4H10) in Titan’s stratosphere. Three sets of Cassini Composite Infrared Spectrometer Focal Plane 4 (1050–1500 cm−1) observations were selected for modeling, having been collected from different flybys and pointing latitudes. We modeled the observations with the Nonlinear Optimal Estimator for MultivariatE Spectral AnalySIS radiative transfer tool. Temperature profiles were retrieved for each of the data sets by modeling the ν 4 emission from methane near 1305 cm−1. Then, incorporating the temperature profiles, we retrieved abundances of all of Titan’s known trace gases that are active in this spectral region, reliably reproducing the observations. We then systematically tested a set of models with varying abundances of n-butane, investigating how the addition of this gas affected the fits. We did this for several different photochemically predicted abundance profiles from the literature, as well as for a constant-with-altitude profile. Ultimately, though we did not produce any firm detection of n-butane, we derived new upper limits on its abundance specific to the use of each profile and to multiple different ranges of stratospheric altitudes. These results will tightly constrain the C4 chemistry of future photochemical modeling of Titan’s atmosphere and also motivate the continued search for n-butane and its isomer, isobutane.

Hypotheses for Triton's plumes: New analyses and future remote sensing tests

Icarus Elsevier 375 (2022) 114835

Authors:

Jason D Hofgartner, Samuel PD Birch, Julie Castillo, Will M Grundy, Candice J Hansen, Alexander G Hayes, Carly JA Howett, Terry A Hurford, Emily S Martin, Karl L Mitchell, Tom A Nordheim, Michael J Poston, Louise M Prockter, Lynnae C Quick, Paul Schenk, Rebecca N Schindhelm, Orkan M Umurhan

Linear Modeling of Spectra of Fine Particulate Materials: Implications for Compositional Analyses of Primitive Asteroids

Earth and Space Science American Geophysical Union (AGU) 9:3 (2022)

Authors:

Vanessa C Lowry, Kerri L Donaldson Hanna, Humberto Campins, Neil Bowles, Victoria E Hamilton, Eloïse C Brown