Transient HCl in the atmosphere of Mars
Science Advances American Association for the Advancement of Science 7:7 (2021) eabe4386
Abstract:
A major quest in Mars' exploration has been the hunt for atmospheric gases, potentially unveiling ongoing activity of geophysical or biological origin. Here, we report the first detection of a halogen gas, HCl, which could, in theory, originate from contemporary volcanic degassing or chlorine released from gas-solid reactions. Our detections made at ~3.2 to 3.8 μm with the Atmospheric Chemistry Suite and confirmed with Nadir and Occultation for Mars Discovery instruments onboard the ExoMars Trace Gas Orbiter, reveal widely distributed HCl in the 1- to 4-ppbv range, 20 times greater than previously reported upper limits. HCl increased during the 2018 global dust storm and declined soon after its end, pointing to the exchange between the dust and the atmosphere. Understanding the origin and variability of HCl shall constitute a major advance in our appraisal of martian geo- and photochemistry.Constraining the surface properties of Helene
Icarus Elsevier 360 (2021) 114366
Abstract:
We analyze two sets of observations of Dione's co-orbital satellite Helene taken by Cassini's Composite Infrared Spectrometer (CIRS). The first observation was a CIRS FP3 (600 to 1100 cm−1, 9.1 to 16.7 μm) stare of Helene's trailing hemisphere, where two of the ten FP3 pixels were filled. The daytime surface temperatures derived from these observations were 83.3 ± 0.9 K and 88.8 ± 0.8 K at local times 223° to 288° and 180° to 238° respectively. When these temperatures were compared to a 1-D thermophysical model only albedos between 0.25 and 0.70 were able to fit the data, with a mean and standard deviation of 0.43 ± 0.12. All thermal inertias tested between 1 and 2000 J m−2 K−1 s-1/2 could fit the data (i.e. thermal inertia was not constrained). The second observation analyzed was a FP3 and FP4 (1100 to 1400 cm−1, 7.1 to 9.1 μm) scan of Helene's leading hemisphere. Temperatures between 77 and 89 K were observed with FP3, with a typical error between 5 and 10 K. The surface temperatures derived from FP4 were higher, between 98 and 106 K, but with much larger errors (between 10 and 30 K) and thus the FP3- and FP4-derived temperature largely agree within their uncertainty. Dione's disk-integrated bolometric Bond albedos have been found to be between 0.63 ± 0.15 (Howett et al. 2010) and 0.44 ± 0.13 (Howett et al. 2014). Thus Helene may be darker than Dione, which is the opposite of the trend found at shorter wavelengths (c.f. Hedman et al. 2020; Royer et al., 2021). However few conclusions can be drawn since the albedos of Dione and Helene agree within their uncertainty.Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors
Frontiers in Sustainable Food Systems Frontiers Media 4 (2021) 518039
Abstract:
Agriculture is a significant contributor to anthropogenic global warming, and reducing agricultural emissions—largely methane and nitrous oxide—could play a significant role in climate change mitigation. However, there are important differences between carbon dioxide (CO2), which is a stock pollutant, and methane (CH4), which is predominantly a flow pollutant. These dynamics mean that conventional reporting of aggregated CO2-equivalent emission rates is highly ambiguous and does not straightforwardly reflect historical or anticipated contributions to global temperature change. As a result, the roles and responsibilities of different sectors emitting different gases are similarly obscured by the common means of communicating emission reduction scenarios using CO2-equivalence. We argue for a shift in how we report agricultural greenhouse gas emissions and think about their mitigation to better reflect the distinct roles of different greenhouse gases. Policy-makers, stakeholders, and society at large should also be reminded that the role of agriculture in climate mitigation is a much broader topic than climate science alone can inform, including considerations of economic and technical feasibility, preferences for food supply and land-use, and notions of fairness and justice. A more nuanced perspective on the impacts of different emissions could aid these conversations.Standing on Apollo’s Shoulders: A Microseismometer for the Moon
The Planetary Science Journal American Astronomical Society 2:1 (2021) 36