Oxygen isotopic ratios in Martian water vapour observed by ACS MIR on board the ExoMars Trace Gas Orbiter

Astronomy and Astrophysics EDP Sciences 630 (2019) A91

Authors:

J Alday, CF Wilson, PGJ Irwin, KS Olsen, L Baggio, F Montmessin, A Trokhimovskiy, O Korablev, AA Fedorova, DA Belyaev, A Grigoriev, A Patrakeev, A Shakun

Abstract:

Oxygen isotope ratios provide important constraints on the history of the Martian volatile system, revealing the impact of several processes that might fractionate them, such as atmospheric loss into space or interaction with the surface. We report infrared measurements of the Martian atmosphere obtained with the mid-infrared channel (MIR) of the Atmospheric Chemistry Suite (ACS), onboard the ExoMars Trace Gas Orbiter. Absorption lines of the three main oxygen isotopologues of water vapour (H216O, H218O, and H217O) observed in the transmission spectra allow, for the first time, the measurement of vertical profiles of the 18O/16O and 17O/16O ratios in atmospheric water vapour. The observed ratios are enriched with respect to Earth-like values (δ18O = 200 ± 80‰ and δ17O = 230 ± 110‰ corresponding to the Vienna Standard Mean Ocean Water). The vertical structure of these ratios does not appear to show significant evidence of altitudinal variations.

2.5-D retrieval of atmospheric properties from exoplanet phase curves: Application to WASP-43b observations

(2019)

Authors:

Patrick GJ Irwin, Vivien Parmentier, Jake Taylor, Jo Barstow, Suzanne Aigrain, Elspeth KH Lee, Ryan Garland

Small bodies science with the Twinkle space telescope

JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS 5:3 (2019) 34004

Authors:

Billy Edwards, Sean Lindsay, Neil Bowles, Giovanna Tinetti, Giorgio Savini, Claudio Arena, Marcell Tessenyi

Abstract:

© 2019 Society of PhotoOptical Instrumentation Engineers (SPIE). Twinkle is an upcoming 0.45-m space-based telescope equipped with a visible and two near-infrared spectrometers covering the spectral range 0.4 to 4.5 μm with a resolving power R 250 (λ < 2.42 μm) and R 60 (λ > 2.42 μm). We explore Twinkle's capabilities for small bodies science and find that, given Twinkle's sensitivity, pointing stability, and spectral range, the mission can observe a large number of small bodies. The sensitivity of Twinkle is calculated and compared to the flux from an object of a given visible magnitude. The number, and brightness, of asteroids and comets that enter Twinkle's field of regard is studied over three time periods of up to a decade. We find that, over a decade, several thousand asteroids enter Twinkle's field of regard with a brightness and nonsidereal rate that will allow Twinkle to characterize them at the instrumentation's native resolution with SNR > 100. Hundreds of comets can also be observed. Therefore, Twinkle offers researchers the opportunity to contribute significantly to the field of Solar System small bodies research.

Detection of Propadiene on Titan

ASTROPHYSICAL JOURNAL LETTERS 881:2 (2019) ARTN L33

Authors:

Nicholas A Lombardo, Conor A Nixon, Thomas K Greathouse, Bruno Bezard, Antoine Jolly, Sandrine Vinatier, Nicholas A Teanby, Matthew J Richter, Patrick JG Irwm, Athena Coustenis, F Michael Flasar

There is no Plan B for dealing with the climate crisis

BULLETIN OF THE ATOMIC SCIENTISTS Informa UK Limited 75:5 (2019) 215-221

Abstract:

© 2019, © 2019 Bulletin of the Atomic Scientists. To halt global warming, the emission of carbon dioxide into the atmosphere by human activities such as fossil fuel burning, cement production, and deforestation needs to be brought all the way to zero. The longer it takes to do so, the hotter the world will get. Lack of progress towards decarbonization has created justifiable panic about the climate crisis. This has led to an intensified interest in technological climate interventions that involve increasing the reflection of sunlight to space by injecting substances into the stratosphere which lead to the formation of highly reflective particles. When first suggested, such albedo modification schemes were introduced as a “Plan B,” in case the world economy fails to decarbonize, and this scenario has dominated much of the public perception of albedo modification as a savior waiting in the wings to protect the world against massive climate change arising from a failure to decarbonize. But because of the mismatch between the millennial persistence time of carbon dioxide and the sub-decadal persistence of stratospheric particles, albedo modification can never safely play more than a very minor role in the portfolio of solutions. There is simply no substitute for decarbonization.