Evidence for ultra-cold traps and surface water ice in the lunar south polar crater Amundsen

Icarus Elsevier 332 (2019) 1-13

Authors:

E Sefton-Nash, J-P Williams, BT Greenhagen, TJ Warren, JL Bandfield, K-M Aye, F Leader, MA Siegler, PO Hayne, Neil Bowles, DA Paige

Abstract:

The northern floor and wall of Amundsen crater, near the lunar south pole, is a permanently shaded region (PSR). Previous study of this area using data from the Lunar Orbiter Laser Altimeter (LOLA), Diviner and LAMP instruments aboard Lunar Reconnaissance Orbiter (LRO) shows a spatial correlation between brighter 1064 nm albedo, annual maximum surface temperatures low enough to enable persistence of surface water ice (<110 K), and anomalous ultraviolet radiation. We present results using data from Diviner that quantify the differential emissivities observed in the far-IR (near the Planck peak for PSR-relevant temperatures) between the PSR and a nearby non-PSR target in Amundsen Crater.

We find features in far-IR emissivity (50–400 μm) could be attributed to either, or a combination, of two effects (i) differential regolith emissive behavior between permanently-shadowed temperature regimes and those of normally illuminated polar terrain, perhaps related to presence of water frost (as indicated in other studies), or (ii) high degrees of anisothermality within observation fields of view caused by doubly-shaded areas within the PSR target that are colder than observed brightness temperatures.

The implications in both cases are compelling: The far-IR emissivity curve of lunar cold traps may provide a metric for the abundance of “micro” cold traps that are ultra-cool, i.e. shadowed also from secondary and higher order radiation (absorption and re-radiation or scattering by surrounding terrain), or for emissive properties consistent with the presence of surface water ice.

Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus.

Science (New York, N.Y.) 364:6445 (2019) eaat2349

Authors:

BJ Buratti, PC Thomas, E Roussos, C Howett, M Seiß, AR Hendrix, P Helfenstein, RH Brown, RN Clark, T Denk, G Filacchione, H Hoffmann, GH Jones, N Khawaja, P Kollmann, N Krupp, J Lunine, TW Momary, C Paranicas, F Postberg, M Sachse, F Spahn, J Spencer, R Srama, T Albin, KH Baines, M Ciarniello, T Economou, H-W Hsu, S Kempf, SM Krimigis, D Mitchell, G Moragas-Klostermeyer, PD Nicholson, CC Porco, H Rosenberg, J Simolka, LA Soderblom

Abstract:

Saturn's main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons' morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons' surfaces are determined by two competing processes: contamination by a red material formed in Saturn's main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus.

Measurement of CH3D on Titan at Submillimeter Wavelengths

ASTRONOMICAL JOURNAL 157:6 (2019) ARTN 219

Authors:

Alexander E Thelen, Conor A Nixon, Martin A Cordiner, Steven B Charnley, Patrick GJ Irwin, Zbigniew Kisiel

Hazes and clouds in a singular triple vortex in Saturn's atmosphere from HST/WFC3 multispectral imaging

Icarus Elsevier 333 (2019) 22-36

Authors:

JF Sanz-Requena, S Perez-Hoyos, A Sanchez-Lavega, T Del Rio-Gaztelurrutia, Patrick Irwin

Abstract:

In this paper we present a study of the vertical haze and cloud structure over a triple vortex in Saturn's atmosphere in the planetographic latitude range 55°N-69°N (del Río-Gaztelurrutia et al., 2018) using HST/WFC3 multispectral imaging. The observations were taken during 29–30 June and 1 July 2015 at ten different filters covering spectral range from the 225 nm to 937 nm, including the deep methane band at 889 nm. Absolute reflectivity measurements of this region at all wavelengths and under a number of illumination and observation geometries are fitted with the values produced by a radiative transfer model. Most of the reflectivity variations in this wavelength range can be attributed to changes in the tropospheric haze. The anticyclones are optically thicker (τ ~25 vs ~10), more vertically extended (~3 gas scale heights vs ~2) and their bases are located deeper in the atmosphere (550 mbar vs 500 mbar) than the cyclone.

Exoplanetary Monte Carlo radiative transfer with correlated-k I. Benchmarking transit and emission observables

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:2 (2019) 2082-2096

Authors:

Graham Lee, J Taylor, SL Grimm, Jean-Loup Baudino, R Garland, PGJ Irwin, K Wood

Abstract:

Current observational data of exoplanets are providing increasing detail of their 3D atmospheric structures. As characterisation efforts expand in scope, the need to develop consistent 3D radiative-transfer methods becomes more pertinent as the complex atmospheric properties of exoplanets are required to be modelled together consistently. We aim to compare the transmission and emission spectra results of a 3D Monte Carlo Radiative Transfer (MCRT) model to contemporary radiative-transfer suites. We perform several benchmarking tests of a MCRT code, Cloudy Monte Carlo Radiative Transfer (CMCRT), to transmission and emission spectra model output. We add flexibility to the model through the use of k-distribution tables as input opacities. We present a hybrid MCRT and ray tracing methodology for the calculation of transmission spectra with a multiple scattering component. CMCRT compares well to the transmission spectra benchmarks at the 10s of ppm level. Emission spectra benchmarks are consistent to within 10% of the 1D models. We suggest that differences in the benchmark results are likely caused by geometric effects between plane-parallel and spherical models. In a practical application, we post-process a cloudy 3DHD 189733b GCM model and compare to available observational data. Our results suggest the core methodology and algorithms of CMCRT produce consistent results to contemporary radiative transfer suites. 3D MCRT methods are highly suitable for detailed post-processing of cloudy and non-cloudy 1D and 3D exoplanet atmosphere simulations in instances where atmospheric inhomogeneities, significant limb effects/geometry or multiple scattering components are important considerations.