Particle Size Effects on Mid‐Infrared Spectra of Lunar Analog Minerals in a Simulated Lunar Environment

Journal of Geophysical Research Planets American Geophysical Union (AGU) 124:4 (2019) 970-988

Authors:

KA Shirley, TD Glotch

Seasonal Evolution of Titan's Stratosphere During the Cassini Mission

GEOPHYSICAL RESEARCH LETTERS 46:6 (2019) 3079-3089

Authors:

NA Teanby, M Sylvestre, J Sharkey, CA Nixon, S Vinatier, PGJ Irwin

Jupiter's auroral-related stratospheric heating and chemistry III: Abundances of C 2 H 4 , CH 3 C 2 H, C 4 H 2 and C 6 H 6 from Voyager-IRIS and Cassini-CIRS

Icarus 328 (2019) 176-193

Authors:

JA Sinclair, JI Moses, V Hue, TK Greathouse, GS Orton, LN Fletcher, PGJ Irwin

Abstract:

© 2019 Elsevier Inc. We present an analysis of Voyager-1-IRIS and Cassini-CIRS spectra of Jupiter's high latitudes acquired during the spacecrafts' respective flybys in November 1979 and January 2001. We performed a forward-model analysis in order to derive the abundances of ethylene (C 2 H 4 ), methylacetylene (CH 3 C 2 H), diacetylene (C 4 H 2 ) and benzene (C 6 H 6 ) in Jupiter's northern and southern auroral regions. We also compared these abundances to: 1) lower-latitude abundances predicted by the Moses et al. (2005) ‘Model A’ photochemical model, henceforth ‘Moses 2005A’, and 2) abundances derived at non-auroral longitudes in the same latitude band. This paper serves as an extension of Sinclair et al. (2017b), where we retrieved the vertical profiles of temperature, C 2 H 2 and C 2 H 6 from similar datasets. We find that an enrichment of C 2 H 4 , CH 3 C 2 H and C 6 H 6 with respect to lower-latitude abundances is required to fit the spectra of Jupiter's northern and southern auroral regions. For example, for CIRS 0.5 cm −1 spectra of Jupiter's southern auroral region, scale factor enrichments of 6.40 −1.15+1.30 and 9.60 −3.67+3.98 are required with respect to the Moses 2005A vertical profiles of C 2 H 4 and C 6 H 6 , respectively, in order to fit the spectral emission features of these species at ∼950 and ∼674 cm −1 . Similarly, in order to fit the CIRS 2.5 cm −1 spectra of Jupiter's northern auroral region, scale factor enrichments of 1.60 −0.21+0.37 , 3.40 −1.69+1.89 and 15.00 −4.02+4.01 with respect to the Moses 2005A vertical profiles of C 2 H 4 , CH 3 C 2 H and C 6 H 6 were required, respectively. Outside of Jupiter's auroral region in the same latitude bands, only upper-limit abundances of C 2 H 4 , CH 3 C 2 H and C 6 H 6 could be determined due to the limited sensitivity of the measurements, the weaker emission features combined with cooler stratospheric temperatures (and therefore decreased thermal emission) of these regions. Nevertheless, for a subset of the observations, derived abundances of C 2 H 4 and C 6 H 6 in Jupiter's auroral regions were higher (by 1 σ) with respect to upper-limit abundances derived outside the auroral region in the same latitude band. This is suggestive that the influx of energetic ions and electrons from the Jovian magnetosphere and external solar-wind environment into the neutral atmosphere in Jupiter's auroral regions drives enhanced ion-related chemistry, as has also been inferred from Cassini observations of Saturn's high latitudes (Fletcher et al., 2018; Guerlet et al., 2015; Koskinen et al., 2016). We were not able to constrain the abundance of C 4 H 2 in either Jupiter's auroral regions or non-auroral regions due to its lower (predicted) abundance and weaker emission feature. Thus, only upper-limit abundances were derived in both locations. From CIRS 2.5 cm −1 spectra, the upper limit abundance of C 4 H 2 corresponds to a scale factor enhancement of 45.6 and 23.8 with respect to the Moses 2005A vertical profile in Jupiter's non-auroral and auroral regions.

New Horizons Photometry of Pluto's Moon Charon

The Astrophysical Journal Letters American Astronomical Society 874:1 (2019) l3

Authors:

BJ Buratti, MD Hicks, JH Hillier, AJ Verbiscer, M Abgarian, JD Hofgartner, TR Lauer, WM Grundy, SA Stern, HA Weaver, CJA Howett, LA Young, A Cheng, RA Beyer, CM Lisse, K Ennico, CB Olkin, SJ Robbins

Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface

Nature Geoscience Springer Nature 12:4 (2019) 242-246

Authors:

KJ Walsh, ER Jawin, R-L Ballouz, OS Barnouin, EB Bierhaus, CHC Jr, JL Molaro, TJ McCoy, M Delbo', CM Hartzell, M Pajola, D Trang, E Asphaug, KJ Becker, CB Beddingfield, CA Bennett, WF Bottke, KN Burke, BC Clark, DN Dellagiustina, JP Dworkin, CM Elder

Abstract:

Small, kilometre-sized near-Earth asteroids are expected to have young and frequently refreshed surfaces for two reasons: collisional disruptions are frequent in the main asteroid belt where they originate, and thermal or tidal processes act on them once they become near-Earth asteroids. Here we present early measurements of numerous large candidate impact craters on near-Earth asteroid (101955) Bennu by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission, which indicate a surface that is between 100 million and 1 billion years old, predating Bennu’s expected duration as a near-Earth asteroid. We also observe many fractured boulders, the morphology of which suggests an influence of impact or thermal processes over a considerable amount of time since the boulders were exposed at the surface. However, the surface also shows signs of more recent mass movement: clusters of boulders at topographic lows, a deficiency of small craters and infill of large craters. The oldest features likely record events from Bennu’s time in the main asteroid belt.