Ground calibration of the Ariel space telescope: optical ground support equipment design and description

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 12180 (2022) 1218049-1218049-11

Authors:

Neil E Bowles, Manuel Abreu, Tim A van Kempen, Matthijs Krijger, Robert Spry, Rory Evans, Robert A Watkins, Cédric Pereira, E Pascale, Paul Eccleston, Chris Pearson, Lucile Desjonquères, Georgia Bishop, Andrew Caldwell, Andrea Moneti, Mauro Focardi, Subhajit Sarkar, Giuseppe Malaguti, Ioannis Argyriou, Keith Nowicki, Alexandre Cabral, Giovanna Tinetti

Ground calibration of the Ariel space telescope: optical ground support equipment design and description

Proceedings Volume 12180, Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave; 1218049 (2022) https://doi.org/10.1117/12.2627049

Authors:

Neil E. Bowles, Manuel Abreu, Tim A. van Kempen, Matthijs Krijger, Robert Spry, Rory Evans, Robert A. Watkins, Cédric Pereira, E. Pascale, Paul Eccleston, Chris Pearson, Lucile Desjonquères, Georgia Bishop, Andrew Caldwell, Andrea Moneti, Mauro Focardi, Subhajit Sarkar, Giuseppe Malaguti, Ioannis Argyriou, Keith Nowicki, Alexandre Cabral, Giovanna Tinetti

Abstract:

This paper describes the Optical Ground Support Equipment (OGSE) that is being developed for the payload level testing of the Ariel Space Telescope. Ariel has been adopted as ESA’s “M4” mission in its Cosmic Visions Programme and will launch in 2029 to the second Earth-Sun Lagrange point. During four years of operation the Ariel payload (PL – the cryogenic payload module plus warm units) will perform precise transit spectroscopy of approximately 1000 known exoplanetary atmospheres using a 1.1 m × 0.7 m telescope coupled to two instruments: the Fine Guidance Sensor (FGS) and the Ariel Infrared Spectrometer (AIRS). These instruments provide three spectrometric channels that cover 1.0 to 7.8 μm wavelength range and three photometric channels between 0.5 and 1.1 μm. The Ariel OGSE will verify the optical and radiometric performance of the integrated Ariel PL under vacuum and cryogenic (<40 K) test conditions within the limitations of operation under Earth’s gravity and vibration environments. To achieve these verification requirements the OGSE is integrated with the main Ariel ground test 5 m thermal vacuum chamber. The test chamber contains a cryogenic enclosure (the Cryogenic Test Rig) that surrounds the PL and the OGSE itself comprises of four subsystems. (1) A cryogenic vacuum chamber and integrating sphere illumination module that is fed by visible, near infrared and thermal infrared sources. The illumination module is mounted external to the Ariel test chamber and coupled via a vacuum feedthrough that relays a 22 mm diameter test beam into the Cryogenic Test Rig. The test beam is then relayed using (2) an injection module that steers the beam to maintain alignment during cool-down and scan the Ariel telescope field of view. The beam is then expanded to partially illuminate the Ariel telescope primary mirror using an (3) ~0.3 m diameter target projector collimating mirror. The final optical component of the OGSE is a (4) beam expander placed on the Ariel common optical bench to compensate for the sub-aperture illumination of the primary and to ensure that the spectrometer modules provide illumination with correct cone angles during ground testing. It is planned to use the OGSE in 2026 for a full range of calibration and verification tests of the end-to-end telescope and instrument performance, including detectors, field of view and alignment. These tests will then ensure that Ariel meets it challenging photometric and spectral performance requirements

HARMONI at ELT: towards a final design for the Natural Guide Star Sensors system

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 12187 (2022) 121871d-121871d-16

Authors:

K Dohlen, P Vola, Z Challita, T Morris, JF Sauvage, L Jocou, A Estrada, T Louth, W Bon, M Dubbeldam, D Montgomery, J-L Gimenez, T Viera Cuberlo, Y Charles, D Le Mignant, A Carlotti, J Pequeiras, K El Hadi, W Humphreys, B Neichel, T Fusco, F Clarke, D Melotte, N Thatte

HARMONI- the Extremely Large Telescope first light integral field spectrograph: a novel control architecture to integrate the science instrument control system with that of adaptive optics

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 12187 (2022) 1218707-1218707-20

Authors:

Hermine Schnetler, Charlotte Bond, Haresh Chulani, Fraser Clarke, Anne Costille, Graciela Delgado Garcia, Jose Miguel Delgado, Sofia Dimoudi, Andrew Dunn, Elizabeth George, Alberto Estrada Piqueras, Sylvain Guieu, Enrique Joven, Marie Larrieu, Yolanda Martin Hernando, Cecilia Martinez Martin, Saul Menendez-Mendoza, Chris Miller, Tim Morris, Arlette Pecontal, Javier Piqueras Lopez, Luis Fernando Rodriguez Ramos, Jörg Stegmeier, Matthew Townson, Teodora Viera, Thierry Fusco, David Le Mignant, Benoît Neichel, Dave Melotte, Matthias Tecza, Niranjan Thatte

Dione's thermal inertia and bolometric Bond albedo derived from Cassini/CIRS observations of solar eclipse ingress

The Planetary Science Journal IOP Publishing 3:8 (2022) 192

Authors:

Carly JA Howett, John R Spencer

Abstract:

On 2010 May 18 Cassini's Composite Infrared Spectrometer (CIRS) observed Dione's leading hemisphere as its surface went into solar eclipse. Surface temperatures derived from each of CIRS' focal plane 3 (FP3, 600−1100 cm−1) show a rapid decrease in Dione's surface temperature upon eclipse ingress. This change was compared to the model surface emission to constrain bolometric Bond albedo and thermal inertia. Seven FP3 detectors were able to constrain the observed surface's thermophysical properties. The bolometric Bond albedo derived from these detectors are consistent with one another (0.54 ± 0.05 to 0.62 ± 0.03) and that of diurnal studies (e.g., 0.49 ± 0.11, Howett et al. 2014). This indicates that Dione's albedo is uniform to within the uncertainties across the observed region of its leading hemisphere. The derived thermal inertias are consistent across detectors, 9 ± 4 J m−2 K−1 s−1/2 (MKS) to 16 ± 8 MKS, and with previous diurnal studies (e.g., 8 to 12 MKS, Howett et al. 2014). The skin depth probed by the eclipse thermal wave is ∼0.6–1 mm, which is much shallower than that probed by diurnal cycles (∼50 mm). Thus, the agreement in thermal inertia between the eclipse and diurnal studies indicates that Dione's subsurface structure is uniform from submillimeter to subcentimeter depths. This is different from the Jovian system, where eclipse-derived thermal inertias are much lower than those derived from diurnal studies. The cause of this difference is not known, but one possibility is that the E-ring grains that bombard Dione's leading hemisphere overturn it, causing uniformity to centimeter depths.