MeerTime - the MeerKAT Key Science Program on Pulsar Timing

Sissa Medialab Srl (2018) 011

Authors:

Matthew Bailes, Ewan Barr, ND Ramesh Bhat, Jeanandrew Brink, Sarah Buchner, Marta Burgay, Fernando Camilo, David Champion, Jason Hessels, Andrew Jameson, Simon Johnston, Aris Karastergiou, Ramesh Karuppusamy, Vicky Kaspi, Michael Keith, Michael Kramer, Maura McLaughlin, Kavilan Moodley, Stefan Oslowski, Andrea Possenti, Scott Ransom, Fred Rasio, Jonathon Sievers, Marcin Serylak, Benjamin Stappers, Ingrid Stairs, Gilles Theureau, Joeri van Leeuwen, Patrick Weltevrede, Norbert Wex

The state-of-play of Anomalous Microwave Emission (AME) research

New Astronomy Reviews Elsevier (2018)

Authors:

C Dickinson, Y Ali-Haïmoud, A Barr, ES Battistelli, A Bell, L Bernstein, S Cassassus, K Cleary, BT Draine, R Génova-Santos, Harper, B Hensley, Jaz R Hill-Valler, T Hoang, FP Israel, Luke Jew, A Lazarian, JP Leahy, Jamie Leech, CH López-Carabello, I McDonald, EJ Murphy, T Onaka, R Paladini, MW Peel, Y Perrott, F Poidevin, ACS Readhead, J-A Rubiño-Martín, Angela C Taylor, CT Tibbs, M Todorovic, M Vidal

Abstract:

Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈10–60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free–free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the powerlaw opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains (“spinning dust”), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.

ThunderKAT: The MeerKAT Large Survey Project for Image-Plane Radio Transients

Sissa Medialab Srl (2018) 013

Authors:

Patrick Alan Woudt, Rob Fender, Stephane Corbel, Mickaël Coriat, Frédéric Daigne, Heino Falcke, Julien Girard, Ian Heywood, Assaf Horesh, Jasper Horrell, Peter G Jonker, Tana Joseph, Atish Kamble, Christian Knigge, Elmar Körding, Marissa Kotze, Chryssa Kouveliotou, Christine Lynch, Tom Maccarone, Pieter Meintjes, Simone Migliari, Tara Murphy, Takahiro Nagayama, Gijs Nelemans, George Nicholson, Tim O’Brien, Alida Oodendaal, Nadeem Oozeer, Julian Osborne, Miguel Perez-Torres, Simon Ratcliffe, Valério ARM Ribeiro, Evert Rol, Anthony Rushton, Anna Scaife, Matthew Schurch, Greg Sivakoff, Tim Staley, Danny Steeghs, Ian Stewart, John D Swinbank, Susanna Vergani, Brian Warner, Klaas Wiersema, Richard Armstrong, Paul Groot, Vanessa McBride, James CA Miller-Jones, Kunal Mooley, Ben Stappers, Ralph AMJ Wijers, Michael Bietenholz, Sarah Blyth, Markus Böttcher, David Buckley, Phil Charles, Laura Chomiuk, Deanne Coppejans, WJG de Blok, Kurt van der Heyden, Alexander van der Horst, Brian van Soelen

LOFAR-Boötes: Properties of high- and low-excitation radio galaxies at $0.5 < z < 2.0$

Monthly Notices of the Royal Astronomical Society Oxford University Press 475:3 (2018) 3429-3452

Authors:

WL Williams, GC Rivera, PN Best, MJ Hardcastle, HJA Röttgering, KJ Duncan, FD Gasperin, Matthew Jarvis, GK Miley, EK Mahony, Leah Morabito, DM Nisbet, I Prandoni, DJB Smith, C Tasse, GJ White

Abstract:

This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Bo\"otes field. To achieve this we match low-frequency radio sources from deep $150$-MHz LOFAR observations to an $I$-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as High- versus Low-Excitation Radio Galaxies (HERGs and LERGs) or Star-Forming galaxies. Based on these classifications we construct luminosity functions for the separate redshift ranges going out to $z = 2$. From the matched radio-optical catalogues, we select a sub-sample of $624$ high power ($P_{150\mathrm{\,MHz}}>10^{25}$ W Hz$^{-1}$) radio sources between $0.5 \leq z < 2$. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

A compact quad-ridge orthogonal mode transducer with wide operational bandwidth

IEEE Antennas and Wireless Propagation Letters Institute of Electrical and Electronics Engineers 17:3 (2018) 422-425

Authors:

Alexander Pollak, Michael E Jones

Abstract:

We present the design and the measured performance of a compact quad-ridge orthomode transducer (OMT) operating in C-band with more than 100% fractional bandwidth. The OMT comprises two sets of identical orthogonal ridges mounted in a circular waveguide. The profile of these ridges was optimised to reduce significantly the transition length, while retaining the wide operational bandwidth of the quad-ridge OMT. In this letter, we show that the optimised compact OMT has better than -15dB return loss with the cross-polarisation well below -40dB in the designated 4.0-8.5GHz band.