Identifying transient and variable sources in radio images

Astronomy and Computing Elsevier 27 (2019) 111-129

Authors:

A Rowlinson, AJ Stewart, JW Broderick, JD Swinbank, RAMJ Wijers, D Carbone, Y Cendes, R Fender, A van der Horst, G Molenaar, B Scheers, T Staley, S Farrell, J-M Grießmeier, M Bell, J Eislöffel, CJ Law, J van Leeuwen, P Zarka

A detailed radio study of the energetic, nearby and puzzling GRB 171010A

(2019)

Authors:

JS Bright, A Horesh, AJ van der Horst, R Fender, GE Anderson, SE Motta, SB Cenko, DA Green, Y Perrott, D Titterington

A 1x4 focal plane array using 230 GHz SIS mixers

29th International Symposium on Space Terahertz Technology (ISSTT 2018) International Symposium on Space Terahertz Technology (2019) 240-244

Authors:

John Garrett, Jamie Leech, F Boussaha, C Chaumont, B Ellison, Ghassan Yassin

Abstract:

A new 1x4 focal plane array centered around 230 GHz is presented in this paper. The size of the array was limited to 4 pixels due to the space available in the test cryostat; however, we can expand the design in the future. On the front of the array block there are 4 waveguides flanges for the RF feed horns, while the local-oscillator signal enters through a separate waveguide on the side. The local-oscillator power is multiplexed using cascaded E-plane power dividers and then combined with the RF signals using directional couplers. Preliminary tests of the array block have now been completed. They show reasonable local-oscillator distribution and excellent RF signal isolation. Future work will involve testing the noise properties of the array block and improving the local-oscillator distribution.

Science with the Cherenkov Telescope Array

World Scientific (2019)

Authors:

BS Acharya, I Agudo, Rafael Batista, Thomas Armstrong, Garret Cotter, Andrea Franco, Paul Morris, Subir Sarkar, Jason J Watson

Abstract:

The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document.

The C-Band All-Sky Survey (C-BASS): constraining diffuse Galactic radio emission in the North Celestial Pole region

Monthly Notices of the Royal Astronomical Society Oxford University Press 485:2 (2019) 2844-2860

Authors:

C Dickinson, A Barr, HC Chiang, C Copley, Richard DP Grumitt, HM Heilgendorff, LRP Jew, JL Jonas, Michael E Jones, JP Leahy, J Leech, EM Leitch, SJC Muchovej, TJ Pearson, MW Peel, ACS Readhead, J Sievers, MA Stevenson, Angela Taylor

Abstract:

The C-Band All-Sky Survey (C-BASS) is a high sensitivity all-sky radio survey at an angular resolution of 45 arcmin and a frequency of 4.7 GHz. We present a total intensity map of the North Celestial Pole (NCP) region of sky, above declination >+80°, which is limited by source confusion at a level of ≈0.6 mK rms. We apply the template-fitting (cross-correlation) technique to WMAP and Planck data, using the C-BASS map as the synchrotron template, to investigate the contribution of diffuse foreground emission at frequencies ∼20–40 GHz. We quantify the anomalous microwave emission (AME) that is correlated with far-infrared dust emission. The AME amplitude does not change significantly (⁠<10 per cent⁠) when using the higher frequency C-BASS 4.7 GHz template instead of the traditional Haslam 408 MHz map as a tracer of synchrotron radiation. We measure template coefficients of 9.93 ± 0.35 and 9.52±0.34 K per unit τ353 when using the Haslam and C-BASS synchrotron templates, respectively. The AME contributes 55±2μK rms at 22.8 GHz and accounts for ≈60 per cent of the total foreground emission. Our results show that a harder (flatter spectrum) component of synchrotron emission is not dominant at frequencies ≳5 GHz; the best-fitting synchrotron temperature spectral index is β = −2.91 ± 0.04 from 4.7 to 22.8 GHz and β = −2.85 ± 0.14 from 22.8 to 44.1 GHz. Free–free emission is weak, contributing ≈7μK rms (⁠≈7 per cent⁠) at 22.8 GHz. The best explanation for the AME is still electric dipole emission from small spinning dust grains.