The prevalence of core emission in faint radio galaxies in the SKA Simulated Skies

Monthly Notices of the Royal Astronomical Society Oxford University Press 471:1 (2017) 908-913

Authors:

IH Whittam, Matthew Jarvis, DA Green, I Heywood, JM Riley

Abstract:

Empirical simulations based on extrapolations from well-established low-frequency (<5 GHz) surveys fail to accurately model the faint, high frequency (>10 GHz) source population; they underpredict the number of observed sources by a factor of 2 below S18GHz = 10 mJy and fail to reproduce the observed spectral index distribution. We suggest that this is because the faint radio galaxies are not modelled correctly in the simulations and show that by adding a flat-spectrum core component to the Fanaroff and Riley type-I (FRI) sources in the Square Kilometre Array (SKA) Simulated Skies, the observed 15 GHz source counts can be reproduced. We find that the observations are best matched by assuming that the fraction of the total 1.4 GHz flux density that originates from the core varies with 1.4 GHz luminosity; sources with 1.4 GHz luminosities < 1025 W Hz − 1 require a core fraction ∼0.3, while the more luminous sources require a much smaller core fraction of 5 × 10−4. The low luminosity FRI sources with high core fractions that were not included in the original simulation may be equivalent to the compact ‘FR0’ sources found in recent studies.

Far-infrared emission in luminous quasars accompanied by nuclear outflows

Monthly Notices of the Royal Astronomical Society Oxford University Press 470:2 (2017) 2314-2319

Authors:

N Maddox, Matthew Jarvis, M Banerji, PC Hewett, N Bourne, L Dunne, S Dye, S Eales, C Furlanetto, SJ Maddox, MWL Smith, E Valiante

Abstract:

Combining large-area optical quasar surveys with the new far-infrared (FIR) Herschel-ATLAS Data Release 1, we search for an observational signature associated with the minority of quasars possessing bright FIR luminosities. We find that FIR-bright quasars show broad C IV emission-line blueshifts in excess of that expected from the optical luminosity alone, indicating particularly powerful nuclear outflows. The quasars show no signs of having redder optical colours than the general ensemble of optically selected quasars, ruling out differences in lineof- sight dustwithin the host galaxies.We postulate that these objectsmay be caught in a special evolutionary phase, with unobscured, high black hole accretion rates and correspondingly strong nuclear outflows. The high FIR emission found in these objects is then either a result of star formation related to the outflow, or is due to dust within the host galaxy illuminated by the quasar. We are thus directly witnessing coincident small-scale nuclear processes and galaxy-wide activity, commonly invoked in galaxy simulations that rely on feedback from quasars to influence galaxy evolution.

DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang

Monthly Notices of the Royal Astronomical Society Oxford University Press 470:4 (2017) 4241-4250

Authors:

Y-C Pan, RJ Foley, M Smith, L Galbany, CB D’Andrea, S Gonzalez-Gaitan, Matthew J Jarvis, R Kessler, E Kovacs, C Lidman, RC Nichol, A Papadopoulos, M Sako, M Sullivan, TMC Abbott, FB Abdalla, J Annis, K Bechtol, A Benoit-Lévy, D Brooks, E Buckley-Geer, DL Burke, AC Rosell, M Carrasco Kind, J Carretero, FJ Castander, CE Cunha, LN da Costa, S Desai, HT Diehl, P Doel, TF Eifler, DA Finley, B Flaugher, J Frieman, J García-Bellido, DA Goldstein, D Gruen, RA Gruendl, J Gschwend, G Gutierrez, DJ James, AG Kim, E Krause, K Kuehn, N Kuropatkin, O Lahav, M Lima, M March

Abstract:

We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ~10 Gyr) and peaking at M_AB = -22.3 +/- 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400-3500 A) properties of the SN, finding velocity of the C III feature changes by ~5600 km/s over 14 days around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5^+3.6_-2.4 x 10^9 M_sun, which is more massive than the typical SLSN-I host galaxy.

Observational evidence that positive and negative AGN feedback depends on galaxy mass and jet power

Monthly Notices of the Royal Astronomical Society Oxford University Press 471:1 (2017) 28-58

Authors:

E Kalfountzou, JA Stevens, Matthew Jarvis, MJ Hardcastle, D Wilner, M Elvis, MJ Page, M Trichas, DJB Smith

Abstract:

Several studies support the existence of a link between the active galactic nucleus (AGN) and star formation activity. Radio jets have been argued to be an ideal mechanism for direct interaction between the AGN and the host galaxy. A drawback of previous surveys of AGN is that they are fundamentally limited by the degeneracy between redshift and luminosity in flux-density limited samples. To overcome this limitation, we present far-infrared Herschel observations of 74 radio-loud quasars (RLQs), 72 radio-quiet quasars (RQQs) and 27 radio galaxies (RGs), selected at 0.9 < z < 1.1, which span over two decades in optical luminosity. By decoupling luminosity from evolutionary effects, we investigate how the star formation rate (SFR) depends on AGN luminosity, radio-loudness and orientation. We find that (1) the SFR shows a weak correlation with the bolometric luminosity for all AGN sub-samples, (2) the RLQs show an SFR excess of about a factor of 1.4 compared to the RQQs, matched in terms of black hole mass and bolometric luminosity, suggesting that either positive radio-jet feedback or radio AGN triggering is linked to star formation triggering, and (3) RGs have lower SFRs by a factor of 2.5 than the RLQ sub-sample with the same BH mass and bolometric luminosity. We suggest that there is some jet power threshold at which radio-jet feedback switches from enhancing star formation (by compressing gas) to suppressing it (by ejecting gas). This threshold depends on both galaxy mass and jet power.

A tale of two transients: GW170104 and GRB170105A

(2017)

Authors:

V Bhalerao, MM Kasliwal, D Bhattacharya, A Corsi, E Aarthy, SM Adams, N Blagorodnova, T Cantwell, SB Cenko, R Fender, D Frail, R Itoh, J Jencson, N Kawai, AKH Kong, T Kupfer, A Kutyrev, J Mao, S Mate, NPS Mithun, K Mooley, DA Perley, YC Perrott, RM Quimby, AR Rao, LP Singer, V Sharma, DJ Titterington, E Troja, SV Vadawale, A Vibhute, H Vedantham, S Veilleux