DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang
Monthly Notices of the Royal Astronomical Society Oxford University Press 470:4 (2017) 4241-4250
Abstract:
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ~10 Gyr) and peaking at M_AB = -22.3 +/- 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400-3500 A) properties of the SN, finding velocity of the C III feature changes by ~5600 km/s over 14 days around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5^+3.6_-2.4 x 10^9 M_sun, which is more massive than the typical SLSN-I host galaxy.Observational evidence that positive and negative AGN feedback depends on galaxy mass and jet power
Monthly Notices of the Royal Astronomical Society Oxford University Press 471:1 (2017) 28-58
Abstract:
Several studies support the existence of a link between the active galactic nucleus (AGN) and star formation activity. Radio jets have been argued to be an ideal mechanism for direct interaction between the AGN and the host galaxy. A drawback of previous surveys of AGN is that they are fundamentally limited by the degeneracy between redshift and luminosity in flux-density limited samples. To overcome this limitation, we present far-infrared Herschel observations of 74 radio-loud quasars (RLQs), 72 radio-quiet quasars (RQQs) and 27 radio galaxies (RGs), selected at 0.9 < z < 1.1, which span over two decades in optical luminosity. By decoupling luminosity from evolutionary effects, we investigate how the star formation rate (SFR) depends on AGN luminosity, radio-loudness and orientation. We find that (1) the SFR shows a weak correlation with the bolometric luminosity for all AGN sub-samples, (2) the RLQs show an SFR excess of about a factor of 1.4 compared to the RQQs, matched in terms of black hole mass and bolometric luminosity, suggesting that either positive radio-jet feedback or radio AGN triggering is linked to star formation triggering, and (3) RGs have lower SFRs by a factor of 2.5 than the RLQ sub-sample with the same BH mass and bolometric luminosity. We suggest that there is some jet power threshold at which radio-jet feedback switches from enhancing star formation (by compressing gas) to suppressing it (by ejecting gas). This threshold depends on both galaxy mass and jet power.ALFABURST: A realtime fast radio burst monitor for the Arecibo telescope
The Fourteenth Marcel Grossmann Meeting World Scientific Publishing Co (2017) 2872-2876
Abstract:
Fast radio bursts (FRBs) constitute an emerging class of fast radio transient whose origin continues to be a mystery. Realizing the importance of increasing coverage of the search parameter space, we have designed, built, and deployed a realtime monitor for FRBs at the 305-m Arecibo radio telescope. Named `ALFABURST', it is a commensal instrument that is triggered whenever the 1.4 GHz seven-beam Arecibo L-Band Feed Array (ALFA) receiver commences operation. The ongoing commensal survey we are conducting using ALFABURST has an instantaneous field of view of 0.02 sq. deg. within the FWHM of the beams, with the realtime software configurable to use up to 300 MHz of bandwidth. We search for FRBs with dispersion measure up to 2560 cm^-3 pc and pulse widthsranging from 0.128 ms to 16.384 ms. Commissioning observations performed over the past few months have demonstrated the capability of the instrument in detecting single pulses from known pulsars. In this paper, I describe the instrument and the associated survey.A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population
(2017)