Prospects for Cherenkov Telescope Array observations of the young supernova remnant RX J1713.7−3946

Astrophysical Journal American Astronomical Society 840:2 (2017) 74

Authors:

F Acero, R Aloisio, J Amans, G Cotter, A De Franco, Subir Sarkar, JJ Watson, Et Et al.

Abstract:

We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7−3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7−3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.

An application of multi-band forced photometry to one square degree of SERVS: accurate photometric redshifts and implications for future science

Astrophysical Journal Supplement Series American Astronomical Society 230:1 (2017) 9-9

Authors:

K Nyland, M Lacy, A Sajina, J Pforr, D Farrah, G Wilson, J Surace, B Häußler, M Vaccari, Matthew Jarvis

Abstract:

We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μm over five well-studied deep fields spanning 18 deg2. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z ≈ 5. To accomplish this, we are using The Tractor to perform "forced photometry." This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from the VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 < z < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.

Extreme jet ejections from the black hole X-ray binary V404 Cygni

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:3 (2017) 3141-3162

Authors:

AJ Tetarenko, GR Sivakoff, JCA Miller-Jones, EW Rosolowsky, G Petitpas, M Gurwell, J Wouterloot, Robert Fender, S Heinz, D Maitra, SB Markoff, S Migliari, MP Rupen, Anthony P Rushton, DM Russell, TD Russell, CL Sarazin

Abstract:

We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope (SCUBA-2) covers eight different frequency bands (including the first detection of aBHXBjet at 666 GHz/450 μm), providing an unprecedented multifrequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set, we performed detailed MCMC modelling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of eight bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well.With our best-fitting model, we provide detailed probes of jet speed, structure, energetics and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.

The LOFAR window on star-forming galaxies and AGNs – curved radio SEDs and IR–radio correlation at 0

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:3 (2017) 3468-3488

Authors:

G Calistro Rivera, WL Williams, MJ Hardcastle, K Duncan, HJA Röttgering, PN Best, M Brüggen, KT Chyży, CJ Conselice, F de Gasperin, D Engels, G Gürkan, HT Intema, Matthew Jarvis, EK Mahony, GK Miley, Leah K Morabito, I Prandoni, J Sabater, DJB Smith, C Tasse, PP van der Werf, GJ White

Abstract:

We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of 1542 galaxies in ∼ 7 deg2 of the LOFAR Boötes field. Using the extensive multiwavelength data set available in Boötes and detailed modelling of the far-infrared to ultraviolet spectral energy distribution (SED), we are able to separate the star formation (N = 758) and the AGN (N = 784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGNs. We investigate the redshift evolution of the infrared–radio correlation for SF galaxies and find that the ratio of total infrared to 1.4-GHz radio luminosities decreases with increasing redshift: q1.4 GHz = (2.45 ± 0.04) (1 + z)−0.15 ± 0.03. Similarly, q150 MHz shows a redshift evolution following q150 GHz = (1.72 ± 0.04) (1 + z)−0.22 ± 0.05. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from q1.4 GHz is not an accurate approximation at all redshifts.

A Herschel Space Observatory Spectral Line Survey of Local Luminous Infrared Galaxies from 194 to 671 Microns

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 230:1 (2017) ARTN 1

Authors:

N Lu, Y Zhao, T Diaz-Santos, C Kevin Xu, Y Gao, L Armus, KG Isaak, JM Mazzarella, PP van der Werf, PN Appleton, V Charmandaris, AS Evans, J Howell, K Iwasawa, J Leech, S Lord, AO Petric, GC Privon, DB Sanders, B Schulz, JA Surace