The Co-ordinated Radio and Infrared Survey for High Mass Star Formation (The CORNISH Survey) - I. Survey Design

(2012)

Authors:

MG Hoare, CR Purcell, EB Churchwell, P Diamond, WD Cotton, CJ Chandler, S Smethurst, SE Kurtz, LG Mundy, SM Dougherty, RP Fender, GA Fuller, JM Jackson, ST Garrington, TR Gledhill, PF Goldsmith, SL Lumsden, J Martí, TJT Moore, TWB Muxlow, RD Oudmaijer, JD Pandian, JM Paredes, DS Shepherd, RE Spencer, MA Thompson, G Umana, JS Urquhart, AA Zijlstra

Revisiting a fundamental test of the disc instability model for X-ray binaries

Monthly Notices of the Royal Astronomical Society 424:3 (2012) 1991-2001

Authors:

M Coriat, RP Fender, G Dubus

Abstract:

We revisit a core prediction of the disc instability model (DIM) applied to X-ray binaries. The model predicts the existence of a critical mass-transfer rate, which depends on disc size, separating transient and persistent systems. We therefore selected a sample of 52 persistent and transient neutron star and black hole X-ray binaries and verified if the observed persistent (transient) systems do lie in the appropriate stable (unstable) region of parameter space predicted by the model. We find that, despite the significant uncertainties inherent to these kinds of studies, the data are in very good agreement with the theoretical expectations. We then discuss some individual cases that do not clearly fit into this main conclusion. Finally, we introduce the transientness parameter as a measure of the activity of a source and show a clear trend of the average outburst recurrence time to decrease with transientness in agreement with the DIM predictions. We therefore conclude that, despite difficulties in reproducing the complex details of the light curves, the DIM succeeds in explaining the global behaviour of X-ray binaries averaged over a long enough period of time. © 2012 The Authors. Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Future Science Prospects for AMI

(2012)

Authors:

Keith Grainge, Paul Alexander, Richard Battye, Mark Birkinshaw, Andrew Blain, Malcolm Bremer, Sarah Bridle, Michael Brown, Richard Davis, Clive Dickinson, Alastair Edge, George Efstathiou, Robert Fender, Martin Hardcastle, Jennifer Hatchell, Michael Hobson, Matthew Jarvis, Benjamin Maughan, Ian McHardy, Matthew Middleton, Anthony Lasenby, Richard Saunders, Giorgio Savini, Anna Scaife, Graham Smith, Mark Thompson, Glenn White, Kris Zarb-Adami, James Allison, Jane Buckle, Alberto Castro-Tirado, Maria Chernyakova, Roger Deane, Farhan Feroz, Ricardo Genova Santos, David Green, Diana Hannikainen, Ian Heywood, Natasha Hurley-Walker, Ruediger Kneissl, Karri Koljonen, Shrinivas Kulkarni, Sera Markoff, Carrie MacTavish, Michael McCollough, Simone Migliari, Jon M Miller, James Miller-Jones, Malak Olamaie, Zsolt Paragi, Timothy Pearson, Guy Pooley, Katja Pottschmidt, Rafael Rebolo, John Richer, Julia Riley, Jerome Rodriguez, Carmen Rodriguez-Gonzalvez, Anthony Rushton, Petri Savolainen, Paul Scott, Timothy Shimwell, Marco Tavani, John Tomsick, Valeriu Tudose, Kurt van der Heyden, Alexander van der Horst, Angelo Varlotta, Elizabeth Waldram, Joern Wilms, Andrzej Zdziarski, Jonathan Zwart, Yvette Perrott, Clare Rumsey, Michel Schammel

Future Science Prospects for AMI

ArXiv 1208.1966 (2012)

Authors:

Keith Grainge, Paul Alexander, Richard Battye, Mark Birkinshaw, Andrew Blain, Malcolm Bremer, Sarah Bridle, Michael Brown, Richard Davis, Clive Dickinson, Alastair Edge, George Efstathiou, Robert Fender, Martin Hardcastle, Jennifer Hatchell, Michael Hobson, Matthew Jarvis, Benjamin Maughan, Ian McHardy, Matthew Middleton, Anthony Lasenby, Richard Saunders, Giorgio Savini, Anna Scaife, Graham Smith, Mark Thompson, Glenn White, Kris Zarb-Adami, James Allison, Jane Buckle, Alberto Castro-Tirado, Maria Chernyakova, Roger Deane, Farhan Feroz, Ricardo Genova Santos, David Green, Diana Hannikainen, Ian Heywood, Natasha Hurley-Walker, Ruediger Kneissl, Karri Koljonen, Shrinivas Kulkarni, Sera Markoff, Carrie MacTavish, Michael McCollough, Simone Migliari, Jon M Miller, James Miller-Jones, Malak Olamaie, Zsolt Paragi, Timothy Pearson, Guy Pooley, Katja Pottschmidt, Rafael Rebolo, John Richer, Julia Riley, Jerome Rodriguez, Carmen Rodriguez-Gonzalvez, Anthony Rushton, Petri Savolainen, Paul Scott, Timothy Shimwell, Marco Tavani, John Tomsick, Valeriu Tudose, Kurt van der Heyden, Alexander van der Horst, Angelo Varlotta, Elizabeth Waldram, Joern Wilms, Andrzej Zdziarski, Jonathan Zwart, Yvette Perrott, Clare Rumsey, Michel Schammel

Abstract:

The Arcminute Microkelvin Imager (AMI) is a telescope specifically designed for high sensitivity measurements of low-surface-brightness features at cm-wavelength and has unique, important capabilities. It consists of two interferometer arrays operating over 13.5-18 GHz that image structures on scales of 0.5-10 arcmin with very low systematics. The Small Array (AMI-SA; ten 3.7-m antennas) couples very well to Sunyaev-Zel'dovich features from galaxy clusters and to many Galactic features. The Large Array (AMI-LA; eight 13-m antennas) has a collecting area ten times that of the AMI-SA and longer baselines, crucially allowing the removal of the effects of confusing radio point sources from regions of low surface-brightness, extended emission. Moreover AMI provides fast, deep object surveying and allows monitoring of large numbers of objects. In this White Paper we review the new science - both Galactic and extragalactic - already achieved with AMI and outline the prospects for much more.

Stellar Mass Black Holes and Ultraluminous X-Ray Sources

(2012)

Authors:

Rob Fender, Tomaso Belloni