Radio continuum surveys with square kilometre array pathfinders
Publications of the Astronomical Society of Australia 30:1 (2013)
Abstract:
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return. © 2013 Astronomical Society of Australia.Smooth walled feed horns for mm and submm radio astronomy
UCMMT 2013 - 2013 6th UK, Europe, China Millimeter Waves and THz Technology Workshop (2013)
Abstract:
Here we describe our work designing multiple flare-angle horns, optimised using a genetic algorithm. Several horns designs will be described and experimentally measured beam patterns for horns at 230 GHz will be presented. In addition, we will present new, wide bandwidth horns offering good performance over a ∼30% bandwidth. © 2013 IEEE.Sub-millimetre source identifications and the microjansky source population at 8.4ghz in thewilliam herschel deep field
Monthly Notices of the Royal Astronomical Society 428:2 (2013) 935-951
Abstract:
Sub-millimetre observations of the William Herschel Deep Field (WHDF) using the Large Apex Bolometer Camera (LABOCA) revealed possible sub-mm counterparts for two X-rayabsorbed quasars. The primary aim here is to exploit ExpandedVery LargeArray (EVLA) radio continuum imaging at 8.4GHz to establish the absorbed quasars as radio/sub-mm sources. The main challenge in reducing the WHDF EVLA data was the presence of a strong 4C source at the field edge. A new calibration algorithm was applied to the data to model and subtract this source. The resulting thermal noise limited radiomap covers a sky area which includes the 16× 16arcmin2 Extended WHDF. It contains 41 radio sources above the 4σ detection threshold, 17 of which have primary beam corrected flux densities. The radio observations show that the two absorbed active galactic nuclei (AGN) with LABOCA detections are also coincident with radio sources, confirming the tendency for X-ray-absorbed AGN to be sub-mm bright. These two sources also show strong ultraviolet excess (UVX) which suggest that the nuclear sightline is gas absorbed but not dust absorbed. Of the three remaining LABOCA sources within the ≈5arcmin half-power diameter of the EVLA primary beam, one is identified with a faint nuclear X-ray/radio source in a nearby galaxy, one with a faint radio source and the other is unidentified in any other band. More generally, differential radio source counts calculated from the beam-corrected data are in good agreement with previous observations, showing atS < 50μJy a significant excess over a pure AGN model. In the full area, of 10 sources fainter than this limit, six have optical counterparts of which three are UVX (i.e. likely quasars) including the two absorbed quasar LABOCA sources. The other faint radio counterparts are not UVX but are only slightly less blue and likely to be star-forming/merging galaxies, predominantly at lower luminosities and redshifts. The four faint, optically unidentified radio sources may be either dust-obscured quasars or galaxies. These high-redshift obscured AGN and lower redshift star-forming populations are thus the main candidates to explain the observed excess in the faint source counts and hence also the excess radio background found previously by the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE2) experiment. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Synchrotron and inverse-Compton emission from blazar jets - IV. BL Lac type blazars and the physical basis for the blazar sequence
Monthly Notices of the Royal Astronomical Society 436:1 (2013) 304-314
Abstract:
In this paper, we investigate the properties of a sample of six BL Lacs by fitting their spectra using our inhomogeneous jet model with an accelerating, magnetically dominated, parabolic base, which transitions to a slowly decelerating conical jet with a geometry based on observations of M87. Our model is able to fit very well to the simultaneous multiwavelength spectra of all the BL Lacs including radio observations. We find that the BL Lacs have lower jet powers and bulk Lorentz factors than the sample of Compton-dominant blazars investigated in Paper III, consistent with the blazar sequence. Excitingly, we find a correlation between the radius at which the jet first comes into equipartition and the jet power, in agreement with our prediction from Paper III.We interpret this result as one of two physical scenarios: a universal jet geometry which scales linearly with black hole mass or a dichotomy in Eddington accretion rates between flat-spectrum radio quasars (FSRQs) and BL Lacs. If we assume that the jet geometry of all blazars scales linearly with black hole mass, then we find a plausible range of masses (~107-1010M⊙).We find that the quiescent gamma-ray spectrum ofMarkarian 421 is best fitted by scattering of external cosmic microwave background photons. We are unable to fit the spectrum using synchrotron self-Compton emission due to strong gamma-ray absorption via pair production even using a compact, rapidly decelerating, jet with a very large bulk Lorentz factor (50), as has been suggested recently. This is because the ratio of synchrotron to inverse-Compton emission requires a high density of synchrotron photons to scatter which makes the region opaque to TeV gamma-rays even with large bulk Lorentz factors. Finally, we fit to the spectral energy distributions of the four high power high synchrotron peak frequency BL Lacs recently found by Padovani et al. We find that their high peak frequency emission is caused by high maximum electron energies whilst the rest of their jet properties are typical of relatively high power BL Lacs and consistent with our predictions. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.The 'universal' radio/X-ray flux correlation: The case study of the black hole GX 339-4
Monthly Notices of the Royal Astronomical Society 428:3 (2013) 2500-2515