Creation and measurement of long-lived magnetic monopole currents in spin ice

Nature Physics 7:3 (2011) 252-258

Authors:

SR Giblin, ST Bramwell, PCW Holdsworth, D Prabhakaran, I Terry

Abstract:

The recent discovery of 'magnetricity' in spin ice raises the question of whether long-lived currents of magnetic 'monopoles' can be created and manipulated by applying magnetic fields. Here we show that they can. By applying a magnetic-field pulse to a Dy 2 Ti 2 O 7 spin-ice crystal at 0.36 K, we create a relaxing magnetic current that lasts for several minutes. We measure the current by means of the electromotive force it induces in a solenoid coupled to a sensitive amplifier, and quantitatively describe it using a chemical kinetic model of point-like charges obeying the Onsager-Wien mechanism of carrier dissociation and recombination. We thus derive the microscopic parameters of monopole motion in spin ice and identify the distinct roles of free and bound magnetic charges. Our results illustrate a basic capacitor effect for magnetic charge and should pave the way for the design and realization of 'magnetronic' circuitry. © 2011 Macmillan Publishers Limited. All rights reserved.

Bilayer manganites reveal polarons in the midst of a metallic breakdown

NATURE PHYSICS 7:12 (2011) 978-982

Authors:

F Massee, S de Jong, Y Huang, WK Siu, I Santoso, A Mans, AT Boothroyd, D Prabhakaran, R Follath, A Varykhalov, L Patthey, M Shi, JB Goedkoop, MS Golden

Ultrafast resonant soft X-ray scattering in manganites: Direct measurement of time-dependent orbital order

Optics InfoBase Conference Papers (2010)

Authors:

H Ehrke, RI Tobey, S Wall, SA Cavill, D Prabhakaran, AT Boothroyd, M Gensch, P Reutler, A Revcolevschi, SS Dhesi, A Cavalleri

Abstract:

We present ultrafast resonant soft-x-ray diffraction measurements of time-dependent orbital order in the single-layer-manganite La0.5Sr1.5MnO4. These experiments reveal the appearance of a metastable phase with reduced ordering, different from any thermal state of the system. © OSA / UP 2010.

Magnetic spectrum of the two-dimensional antiferromagnet La2 CoO4 studied by inelastic neutron scattering

Physical Review B - Condensed Matter and Materials Physics 82:18 (2010)

Authors:

P Babkevich, D Prabhakaran, CD Frost, AT Boothroyd

Abstract:

We report measurements of the magnetic excitation spectrum of the layered antiferromagnet La2 CoO4 by time-of-flight neutron inelastic scattering. In the energy range probed in our experiments (0-250 meV) the magnetic spectrum consists of spin-wave modes with strong in-plane dispersion extending up to 60 meV, and a nearly dispersionless peak at 190 meV. The spin-wave modes exhibit a small (∼1meV) dispersion along the magnetic zone boundary. We show that the magnetic spectrum can be described very well by a model of a Heisenberg antiferromagnet that includes the full spin and orbital degrees of freedom of Co2⊃+ in an axially distorted crystal field. The collective magnetic dynamics are found to be controlled by dominant nearest-neighbor exchange interactions, strong XY-like single-ion anisotropy and a substantial unquenched orbital angular momentum. © 2010 The American Physical Society.

Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering

Physical Review B - Condensed Matter and Materials Physics 82:18 (2010)

Authors:

HJ Lewtas, AT Boothroyd, M Rotter, D Prabhakaran, H Müller, MD Le, B Roessli, J Gavilano, P Bourges

Abstract:

We present data on the magnetic and magnetoelastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization, and thermal-expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal R MnO3 compounds. © 2010 The American Physical Society.