Ultrafast Resonant Soft X-ray Scattering in Manganites: Direct Measurement of Time-dependent Orbital Order
Optica Publishing Group (2010) me48
Charge order, enhanced orbital moment, and absence of magnetic frustration in layered multiferroic LuFe2 O4
Physical Review B - Condensed Matter and Materials Physics 80:22 (2009)
Abstract:
Electronic and magnetic properties of the charge ordered phase of LuFe2 O4 are investigated by means of x-ray spectroscopic and theoretical electronic structure approaches. LuFe2 O4 is a compound showing fascinating magnetoelectric coupling via charge ordering. Here, we identify the spin ground state of LuFe2 O4 in the charge ordered phase to be a 2:1 ferrimagnetic configuration, ruling out a frustrated magnetic state. An enhanced orbital moment may enhance the magnetoelectric coupling. Furthermore, we determine the densities of states and the corresponding correlation potentials by means of x-ray photoelectron and emission spectroscopies, as well as electronic structure calculations. © 2009 The American Physical Society.Nature of the magnetic order and origin of induced ferroelectricity in TbMnO3
Physical Review Letters 103:20 (2009)
Abstract:
The magnetic structures which endow TbMnO3 with its multiferroic properties have been reassessed on the basis of a comprehensive soft x-ray resonant scattering (XRS) study. The selectivity of XRS facilitated separation of the various contributions (Mn L2 edge, Mn 3d moments; Tb M4 edge, Tb 4f moments), while its variation with azimuth provided information on the moment direction of distinct Fourier components. When the data are combined with a detailed group theory analysis, a new picture emerges of the ferroelectric transition at 28 K. Instead of being driven by the transition from a collinear to a noncollinear magnetic structure, as has previously been supposed, it is shown to occur between two noncollinear structures. © 2009 The American Physical Society.High-resolution hard x-ray photoemission investigation of La 2-2x Sr 1+2x Mn 2 O 7 (0.30≤x<0.50): Microscopic phase separation and surface electronic structure of a bilayer colossal magnetoresistance manganite
Physical Review B - Condensed Matter and Materials Physics 80:20 (2009)
Abstract:
Photoemission data taken with hard x-ray radiation on cleaved single crystals of the bilayered, colossal magnetoresistant manganite La 2-2xSr 1+2xMn 2O 7 (LSMO) with 0.30≤x<0.50 are presented. Making use of the increased bulk sensitivity upon hard x-ray excitation it is shown that the core-level footprint of the electronic structure of the LSMO cleavage surface is identical to that of the bulk. Furthermore, by comparing the core-level shift of the different elements as a function of doping level x, it is shown that microscopic phase separation is unlikely to occur for this particular manganite well above the Curie temperature. © 2009 The American Physical Society.Experimental study of the interfacial cobalt oxide in Co3 O 4 /α- Al2 2 O3 (0001) epitaxial films
Physical Review B - Condensed Matter and Materials Physics 80:15 (2009)